• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mapping and functional characterisation of the Atlantic salmon genome and its regulation of pathogen response

Gonen, Serap January 2015 (has links)
Atlantic salmon is a species of both scientific and economic importance, and Atlantic salmon farming is a highly profitable industry worldwide. One of the biggest challenges being faced by farms, which affects production efficiency and results in severe economic loss, is disease. In livestock production, one of the approaches taken to limit the impact of disease outbreaks is to selectively breed for improved resistance within farmed populations. Although traditional family-based resistance breeding programs have shown improvements in resistance to a variety of bacterial, viral and parasitic diseases on Atlantic salmon farms, response to selection can be slow. One way of increasing selection efficiency is through the incorporation of genetic markers into breeding programs, for marker-assisted or genomic selection. However, genomic resources for cultured aquatic species are sparse, and the generation of new and denser resources for use in selective breeding programs would be advantageous. The main focus of this thesis is the development of genomic resources in Atlantic salmon and the application of those resources to gain a better understanding of the salmon genome, particularly in the genetic basis of host resistance to infectious diseases. The first aim of this thesis was to develop improved genomic resources for Atlantic salmon, and to characterise the Atlantic salmon genome via construction and analysis of a SNP linkage map derived from RAD-Sequencing (RAD-Seq). Approximately 6,500 SNPs were assigned to 29 linkage groups, and ~1,800 male-segregating, and ~1,400 female-segregating SNPs were ordered and positioned. Overall map lengths and recombination ratios were relatively consistent between the sexes and across the linkage groups (~1:1.5, male:female). However, a substantial difference in the degree of marker clustering was seen between males and females, which is reflective of the difference in the positions of chiasmata between the two sexes. Using this map, ~4,000 Atlantic salmon reference genome contigs were assigned to a linkage group, and 112 contigs were assigned to multiple linkage groups, highlighting regions of homeology (large sections of duplicated chromosomal regions) within the salmon genome. Alignment of SNP-flanking sequences to the stickleback and rainbow trout genomes identified putative gene-associated SNPs and cross-species chromosomal orthologies, and provided evidence in support of the salmonid-specific genome duplication. In addition, based on this and other publically available RAD-Seq datasets, the utility of RAD-Seq-derived data from different species and laboratories for population genetics analyses was tested. Short RAD-Seq contigs in Atlantic salmon and nine other teleost fish were used to identify cross-species orthologous genomic relationships. Several thousands of orthologous RAD loci were identified across the species, with the number of RAD loci decreasing with evolutionary distance, as expected. Previously published broad-level relationships between orthologous chromosomes were confirmed. The identified cross-species orthologous RAD loci were used to estimate evolutionary relationships between the ten teleost fish species. Previously published relationships were recovered, suggesting that RAD-Seq data derived from different laboratories is useful for this purpose. The second aim was to characterise the genetic architecture of resistance to two viral diseases affecting Atlantic salmon production on farms: pancreas disease (PD), and infectious pancreatic necrosis (IPN). Using data and samples collected from a large population of salmon fry challenged with PD, a high heritability for resistance was estimated (h2 ~0.5), and four QTL were identified, on chromosomes 3, 4, 7 and 23. The QTL explaining the highest within-family variation for resistance was located on chromosome 3. This QTL has been confirmed in a population of post-smolts by an independent research group, highlighting the potential for its incorporation into breeding programs to improve PD resistance. For IPN, the major resistance QTL had previously been mapped to linkage group 21. However, the mutation(s) underlying this QTL effect and the consequences of these mutation(s) on the affected genes and relevant biological resistance mechanisms are unknown. To generate a list of candidate genes within the vicinity of the IPN QTL, QTL-linked DNA sequences were aligned to four model fish genomes. This identified two QTL-orthologous regions in each of the species, and gene order within these regions was highly conserved across species. Analysis of gene expression patterns between IPN resistant and susceptible salmon in a viral challenge experiment revealed that the five most significantly differentially-expressed genes mapped to the QTL-orthologous region on linkage group II of stickleback. Pathway enrichment analysis across all differentially-expressed genes suggests that biological pathways influencing viral infection stress response/entry/replication, cellular energy production and apoptosis may be involved in resistance during the initial stages of IPN virus (IPNV) infection. These results have provided the basis for further study of the putative involvement of these candidate genes and pathways in genetic resistance to IPNV. In summary, the results and resources presented in this thesis extend our current understanding of the salmon genome and the genetic basis of resistance to two viral diseases, and provide resources with the potential to be used in Atlantic salmon selective breeding programs to tackle disease outbreaks.
2

Differential interaction of Magnaporthe grisea and Fusarium graminearum with ears of wheat cultivars varying in resistance

Ha, Xia 12 November 2014 (has links)
No description available.
3

Phänotypisierung von Raps- und anderen Brassica-Genotypen zur Identifizierung von Resistenzquellen gegenüber Sclerotinia sclerotiorum / Phenotypisation of oilseed rape and other Brassica species to identify resistance sources against Sclerotinia sclerotiorum

Wulf, Tobias 21 July 2011 (has links)
No description available.
4

Improvement of Winter Oilseed Rape Resistance to Verticillium longisporum - Assessment of Field Resistance and Characterization of Ultrastructural Plant Responses

Knüfer, Jessica 21 July 2011 (has links)
Die Intensivierung des Rapsanbaus in den letzten Jahren hat zu einem verstärkten Aufkommen des bodenbürtigen Gefäßpathogens V. longisporum geführt. Die für den Pilz charakteristischen Mikrosklerotien können langjährig im Boden überdauern, akkumulieren und somit zur fortdauernden Bodenkontamination führen. Eine Infektion mit V. longisporum kann bereits im Herbst erfolgen, wenn durch Wurzelexsudate stimulierte Mikrosklerotien auskeimen und direkt die Wurzelepidermis der Rapspflanze penetrieren. Einer sowohl intra-als auch interzellulär gerichteten Ausbreitung bis zu den Gefäßelementen schließt sich eine langanhaltende Phase des Pilzes im Gefäßsystem an. In dieser latenten Phase zeigen sich keine auffälligen Symptome an der Pflanze, erst zum Ende der Pflanzenentwicklung zeigt sich halbseitige Stängelverbräunung und vorzeitige Abreife kann zu Ertragseinbußen führen. Der Pilz bleibt so lange auf die Gefäße beschränkt bis die Pflanze in die Seneszenzphase eintritt. Dann erfolgt eine Besiedelung der angrenzenden parenchymatischen Zellen und die Bildung von Mikrosklerotien. Mit Pflanzenresten können diese wieder in den Boden gelangen. Da derzeit keine adequaten Pflanzenschutzmittel zur Verfügung stehen, ist der Anbau resistenter Sorten eine wirkungsvolle Maßnahme die Verbreitung des Pilzes einzudämmen und der Anreicherung von Mikrosklerotien im Boden entgegenzuwirken. Im Rahmen dieser Arbeit wurde ein entscheidender Beitrag zur Züchtung neuer resistenter Genotypen geleistet. Phänotypisierungen zur Identifizierung resistenter B. napus-Linien (darunter auch DH-Linien) erfolgten unter kontrollierten Bedingungen im Gewächshaus in Göttingen. Darüber hinaus wurde die Resistenz ausgewählter B. napus-Linien in zwei aufeinander folgenden Jahren anhand von Feldversuchen in Göttingen, an verschiedenen Standorten in Norddeutschland und an einem Standort in Südschweden evaluiert. Eine Untersuchung der von 2004 bis 2009 im Gewächshaus getesteten B. napus Akzessionen wurde hinsichtlich der Häufigkeitsverteilungen der berechneten normierten AUDPC-Werte betrachtet. So konnte deutlich gezeigt werden, dass sich das Resistenzlevel in den aktuellsten Screenings deutlich verbessert hat im Vergleich zum Beginn der Screenings. Die Reproduzierbarkeit der Screenings wurde deutlich durch die Betrachtung der normierten AUDPC-Werte der Referenzsorten ‘Falcon’ und ‘Express’. So waren die normierten AUDPC-Werte der mittelgradig resistenten Referenzsorte ‘Express’ durchgängig niedriger im Vergleich zu der anfälligen Sorte ‘Falcon’, was für die Robustheit der Methodik spricht. Der Vergleich zwischen Gewächshaus- und Feldversuchen zeigte, dass eine geringe Korrelation zwischen den im Feld und Gewächshaus getesteten Akzessionen besteht und macht die Komplexität der Untersuchungen deutlich. Ein Screening von Genotypen kann jedoch nur schnell und in großem Umfang unter Gewächshaus-Bedingungen erfolgen. Die erweiterte Testung im Feld ist dann jedoch nötig, um die Resistenz unter zusätzlichem abiotischem Stress zu evaluieren. Neben der Bewertung des Befallsgrades (Befallshäufigkeit, Befallsstärke) mittels Stoppelbonitur wurde eine alternative Bewertungsmethode zur Evaluierung der Resistenz im Feld kultivierter Rapspflanzen gegenüber V. longisporum entwickelt. Die Entwicklung einer sensitiven real-time PCR (qPCR)-Methode zur Detektion von V. longisporum in Rapsstängeln beinhaltete die Bewertung zweier unterschiedlicher Primer, abzielend auf die internal transcribed spacer (ITS) Region bzw. auf die β-Tubulin-Region, die hinsichtlich ihrer Sensitivität und Spezifität analysiert wurden. Die hier getesteten ITS-Primer wiesen eine hohe Sensitivität gegenüber genomischer Pilz-DNA auf, jedoch wurde keine Spezifität gegenüber V. longisporum Isolaten festgestellt; vielmehr wurden V. dahliae Isolate und zwei weitere Verticillium Arten mit ITS-Primern detektiert. Das zweite getestete Primerpaar zeigte hingegen eine hohe Spezifität gegenüber V. longsiporum Isolaten, lediglich 3 von 15 getesteten V. longisporum Isolaten wurden nicht erfasst. Die Sensitivität dieser Primer war jedoch im Vergleich zu den ITS-Primern stark verringert. Die ITS-basierte qPCR Analyse führte zur Detektion des Pathogens noch vor der Symptomausbildung im Feld. So konnte in der Saison 2008/09 am Standort Göttingen gezeigt werden, dass frühe Infektionen bereits zu BBCH 65 auftraten und innerhalb weniger Wochen eine massive Besiedelung anfälliger Sorten erfolgte. Zudem konnte die pilzliche DNA-Konzentration in infizierten Rapsstängeln verschieden anfälliger Sorten quantifiziert und eine Korrelation zwischen der herkömmlichen Stoppelbonitur und dem Screening im Gewächshaus hinsichtlich der Einordnung der Resistenzniveaus hergestellt werden. Dies unterstützt die Verwendung der molekularen Methode als Alternative zur Stoppelbonitur. Neben der Verbesserung der Detektion von V. longisporum im Feld wurde die Pathogen-Wirt-Interaktion hinsichtlich der Ausbildung von Resistenzmechanismen charakterisiert. Dazu wurden zwei verschieden anfällige B. napus-Linien nach Inokulation mit V. longisporum sowohl auf histologischer als auch auf molekularbiologischer Ebene im Hypokotylbereich untersucht. Dieser Abschnitt, der den Bereich vom Wurzelhals bis zum Keimblattansatz markiert, konnte in vorangegangenen Untersuchungen als Schlüsselgewebe für die Ausbildung von Resistenzstrukturen identifiziert werden (Eynck et al., 2009). Anknüpfend an diese Untersuchungen wurden mittels Transmissionselektronenmikroskopie (TEM) genotypabhängige Resistenzstrukturen wie Gefäßverschlüsse und morphologische Veränderungen des Gefäßbereiches untersucht und begleitende qPCR-Messungen dokumentierten die Pathogenausbreitung. Diese ließen erkennen, dass der anfällige Genotyp im Vergleich zum resistenten Genotyp schneller besiedelt wird. Jedoch zeigten beide mit V. longisporum inokulierten Genotypen ähnliche ultrastrukturelle Veränderungen im vaskulären Bereich. So konnten Veränderungen an vaskulären Zellwänden wie elektronendichte Ablagerungen und Degradation primärer Zellwände im Bereich der Tüpfel beobachtet werden. Zudem konnte das Verschließen von Gefäßelementen mittels gelartiger Strukturen nachgewiesen werden. Unsere Untersuchungen lassen vermuten, dass der resistente Genotyp fähig ist Infektionen schneller zu erkennen und Resistenzmechanismen zielgerichteter und intensiver zu aktivieren. Da eine V. longisporum-Infektion in dem untersuchten resistenten Genotyp SEM 05-500256 u. a. zu einer verstärkten Bildung von Gefäßbarrieren im Hypokotylbereich führt (Eynck et al., 2009), wurde eine Beeinträchtigung des pflanzlichen Wassertransportes vermutet. Zur Klärung dieser Frage wurde der resistente Genotyp zusätzlich zu einer Infektion mit V. longisporum Trockenstressbedingungen (30% Feldkapazität) ausgesetzt und physiologische Parameter (Gaswechselmessungen), Befallswerte (AUDPC, Stauchung) und agronomische Parameter (Phänologisches Entwicklungsstadium, Anzahl Seitentriebe, Ertragsparameter) erfasst und im Vergleich zu der anfälligen Sorte ‘Falcon’ evaluiert. Weder die Befallsparameter noch die agronomischen Parameter zeigten eine Beeinträchtigung der Resistenz von SEM bei V. longisporum-Infektion in Kombination mit Trockenstress an.
5

Genetic analysis of leaf and stripe rust resistance in the spring wheat (Triticum aestivum L.) cross RL4452/AC Domain

2013 June 1900 (has links)
Leaf rust and stripe rust of wheat (Triticum aestivum L.) are caused by the fungal pathogens Puccinia triticina, and Puccinia striiformis f.sp. tritici, respectively. In North America, the incorporation of adult-plant resistance (APR) genes into breeding lines has been an important strategy to achieve durable resistance to both diseases. Previously, the spring wheat cultivar AC Domain was reported to express an effective level of adult-plant resistance (APR) to leaf rust under field conditions. Early gene postulation work had suggested AC Domain might carry the APR gene Lr34 due to its phenotypic similarity to other Lr34 carrying lines. However, new gene specific markers have shown that AC Domain is not a carrier of Lr34. The objective of this research was to genetically localize the resistance in AC Domain, which is important because the cultivar has frequently been used as a parent in Canadian breeding programs, primarily for its value as a source of pre-harvest sprouting resistance. A mapping population of 185 doubled haploid (DH) lines derived from the cross ‘RL4452’ by ‘AC Domain’ was used for this study. RL4452 is a known carrier of Lr34. During 2011-2012, the DH population was evaluated in field leaf rust nurseries at Saskatoon, SK and Portage, MB and at a stripe rust nursery at Lethbridge, AB. Field results indicated that rust resistance in the mapping population was variable, with lines ranging from highly resistant, to highly susceptible. DH lines carrying Lr34 showed a high level of resistance to both diseases. Thus, the non-Lr34 carriers were genotyped using select SSR markers, and by an Illumina 9k Infinium iSelect SNP assay for subsequent quantitative trait loci (QTL) analysis. QTL analysis revealed that AC Domain donated a major resistance QTL located on chromosome 2BS, that mapped 46 cM proximal to markers linked to Lr16, and explained a significant portion of the leaf and stripe rust phenotypic variance in all test environments. In addition, this QTL was significantly associated with the expression leaf tip necrosis (LTN), reduction in area under the disease progress curve (AUDPC), and coefficient of infection (CI). In certain environments the interaction between the 2B QTL and Lr34 was additive resulting in a superior level of rust resistance. Indoor rust testing showed AC Domain was susceptible to both diseases at the seedling stage. Taken together these results suggest that the identified resistance in AC Domain is likely due to the presence of an APR gene, on chromosome 2BS.
6

Technology Adoption, Productivity, Efficiency, and Risk Exposure in the Ethiopian Small Farm Sector

Abro, Zewdu Ayalew 02 July 2018 (has links)
No description available.
7

The economics of exchanging and adopting plant genetic resources for food and agriculture / Evidence from Germany and Peru

Lüttringhaus, Sophia 09 March 2022 (has links)
Landwirtschaftliche Systeme müssen sich immerfort an Druckfaktoren wie Klimawandel und Bevölkerungswachstum anpassen. Hierbei spielt die genetische Vielfalt von Pflanzen eine wichtige Rolle, da diese für die Sicherung der Ernährung und des Einkommens von entscheidender Bedeutung ist. Dennoch wird der wirtschaftliche Wert pflanzengenetischer Ressourcen selten untersucht. Um diese Forschungslücke zu schließen, werden in dieser Arbeit drei Bewertungen vorgestellt, welche die wirtschaftlichen Werte pflanzengenetischer Ressourcen untersuchen. Im Rahmen dieser Dissertation werden zwei verschiedene Agrarsystemen analysiert. Diese unterscheiden sich hinsichtlich des Klimas, der agrarökologischen Bedingungen, der landwirtschaftlichen Praxis, der politischen und ökonomischen Rahmenbedingungen sowie der soziokulturellen Verankerung der Kulturart. Die ersten beiden Analysen befassen sich mit der Züchtung und Produktion von Winterweizen in Deutschland. Charakterisiert sind diese durch ein gemäßigtes Klima und intensive Anbaubedingungen. In diesem System überwiegen moderne Sorten, die in einem formalisierten Züchtungsprozess entstanden sind. Es werden die folgenden Forschungsfragen beantwortet: 1) Was ist der ökonomische Wert, der durch den Austausch von Zuchtmaterial entsteht? und 2) Wie hoch ist der mikroökonomische Wert von Resistenzzüchtung? In der dritten Analyse wird ein weiteres Agrarsystem vorgestellt: Die Andenlandwirtschaft, wo im Hochland unter extensiven Bedingungen eine Vielzahl von Kartoffellandrassen angebaut wird. Dort wird folgende Frage analysiert: 3) Welche Mehrwerte wurden durch die Repatriierung oder Neuverteilung von Kartoffellandrassen erzielt? Diese Analysen zeigen, dass die Verfügbarkeit, der Austausch und die Nutzung von pflanzengenetischen Ressourcen die Agrarproduktion verbessern; es entstehen sowohl sektorale, mikroökonomische als auch ernährungsbezogene und kulturelle Mehrwerte. / Agricultural systems must constantly adapt to pressuring events such as climate change and population growth to maintain and improve production processes in a sustainable manner. Thereby the genetic diversity of plants used in agriculture constitute a strategic asset. Nevertheless, their economic value is often overlooked. To fill this research gap, this thesis presents three assessments that produce more evidence on the economic value of plant genetic resources. Two very distinct agricultural systems are discussed. These differ greatly in terms of climate, agroecological conditions, farming practices, seed systems, political and economic frameworks, and the socio-cultural embeddedness of the crop in question. The first two assessments are concerned with winter wheat (Triticum aestivum) breeding and production in the temperate climate and intensive growing conditions in Germany. Modern cultivars created in a formalized breeding process prevail in this system. The following two research questions are elaborated: 1) What is the economic value of exchanging breeding material? and 2) What is the microeconomic value of resistance breeding? The third assessment presents a different agricultural system: Andean agriculture, where a wide variety of potato landraces (Solanum spp.) are grown extensively in the Peruvian highlands. In this case, the research question I investigated is: 3) What are the benefits of repatriating (i.e., redistributing) potato landraces to Andean farmers? These studies demonstrate that the availability, exchange, and adoption of plant genetic resources, which are well adapted to and culturally embedded in specific agricultural systems, improve the overall quantity and sustainability of agricultural production. These improvements can be translated into sectoral, microeconomic as well as nutritional and cultural benefits.

Page generated in 0.2886 seconds