• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High-gain planar resonant cavity antennas using metamaterial surfaces

Wang, Shenhong January 2006 (has links)
This thesis studies a new class of high gain planar resonant cavity antennas based on metamaterial surfaces. High-gain planar antennas are becoming increasing popular due to their significant advantages (e.g. low profile, small weight and low cost). Metamaterial surfaces have emerged over the last few years as artificial structures that provide properties and functionalities not readily available from existing materials. This project addresses novel applications of innovative metamaterial surfaces on the design of high-gain planar antennas. A ray analysis is initially employed in order to describe the beamfonning action of planar resonant cavity antennas. The phase equations of resonance predict the possibility of low-profile/subwavelength resonant cavity antennas and tilted beams. The reduction of the resonant cavity profile can be obtained by virtue of novel metamaterial ground planes. Furthermore, the EBG property of metamaterial ground planes would suppress the surface waves and obtain lower backlobes. By suppressing the TEM mode in a resonant cavity, a novel aperture-type EBG Partially Reflective Surface (PRS) is utilized to get low sidelobes in both planes (E-plane and H-plane) in a relatively finite structure. The periodicity optimization of PRS to obtain a higher maximum directivity is also investigated. Also it is shown that antennas with unique tilted beams are achieved without complex feeding mechanism. Rectangular patch antennas and dipole antennas are employed as excitations of resonant cavity antennas throughout the project. Three commercial electromagnetic simulation packages (Flomerics Microstripes ™ ver6.S, Ansoft HFSSTM ver9.2 and Designer ™ ver2.0) are utilized during the rigorous numerical computation. Related measurements are presented to validate the analysis and simulations.
12

Modifying terahertz waveguide geometries: Bends, tapers, and grooves

January 2012 (has links)
Terahertz waveguides are the focus of considerable research interest due to their potential for sensing, imaging and communications applications. Two of the most promising designs are the metal wire waveguide and the parallel-plate waveguide. The metal wire waveguide exhibits excellent low loss and low dispersion characteristics. However, the radiation is only weakly coupled to the wire and the beam extends a great distance from the waveguide, which can lead to high bending loss. In my research I show that this large beam extent also gives a high degree of flexibility in the geometry required to couple radiation into the waveguide or between waveguide sections. I also show that the traditional formalism of bending loss is incomplete, and that there is an optimum radius of curvature to reduce loss. The relationship between the beam extent and the radius of the wire presents the possibility of a tapered waveguide to confine the radiation as it propagates. I here present experimental data and simulations results to verify this subwavelength confinement at the tip of a tapered metal wire waveguide, which is of great interest for near-field imaging applications. The parallel-plate waveguide is another design frequently employed due to its low loss and low dispersion characteristics. Resonant structures may also be easily incorporated into the waveguide for sensing and filtering applications. One such structure is a single rectangular groove, which serves as a notch filter with a very narrow linewidth when the transverse-electric (TE) mode of the waveguide is excited, though its physical origin is poorly understood. In this work I present a detailed experimental and theoretical study of the rectangular resonant cavity in a TE-mode parallel-plate waveguide, particularly with respect to its potential as a microfluidic refractive index sensor. This study is extended to include the possibility of two grooves, in both coupled and non-coupled geometries, and their efficacy as multichannel or high-resolution single-channel microfluidic sensors.
13

Silicon based microcavity enhanced light emitting diodes

Potfajova, J. 31 March 2010 (has links) (PDF)
Realising Si-based electrically driven light emitters in a process technology compatible with mainstream microelectronics CMOS technology is key requirement for the implementation of low-cost Si-based optoelectronics and thus one of the big challenges of semiconductor technology. This work has focused on the development of microcavity enhanced silicon LEDs (MCLEDs), including their design, fabrication, and experimental as well as theoretical analysis. As a light emitting layer the abrupt pn-junction of a Si-diode was used, which was fabricated by ion implantation of boron into n-type silicon. Such forward biased pn-junctions exhibit room-temperature EL at a wavelength of 1138 nm with a reasonably high power efficiency of 0.1% [1]. Two MCLEDs emitting light at the resonant wavelength about 1150 nm were demonstrated: a) 1 MCLED with the resonator formed by 90 nm thin metallic CoSi2 mirror at the bottom and semitranparent distributed Bragg reflector (DBR) on the top; b) 5:5 MCLED with the resonator formed by high reflecting DBR at the bottom and semitransparent top DBR. Using the appoach of the 5:5 MCLED with two DBRs the extraction efficiency is enhanced by about 65% compared to the silicon bulk pn-junction diode.
14

Investigation of resonant-cavity-enhanced mercury cadmium telluride infrared detectors

Wehner, Justin January 2007 (has links)
[Truncated abstract] Infrared (IR) detectors have many applications, from homeland security and defense, to medical imaging, to environmental monitoring, to astronomy, etc. Increasingly, the wave- length dependence of the IR radiation is becoming important in many applications, not just the total intensity of infrared radiation. There are many types of infrared detectors that can be broadly categorized as either photon detectors (narrow band-gap materials or quantum structures that provide the necessary energy transitions to generate free car- riers) or thermal detectors. Photon detectors generally provide the highest sensitivity, however the small transition energy of the detector also means cooling is required to limit the noise due to intrinsic thermal generation. This thesis is concerned with the tech- nique of resonant-cavity-enhancement of detectors, which is the process of placing the detector within an optically resonant cavity. Resonant-cavity-enhanced detectors have many favourable properties including a reduced detector volume, which allows improved operating temperature, or an improved signal to noise ratio (or some balance between the two), along with a narrow spectral bandwidth. ... Responsivity of another sample annealed for 20 hours at 250C in a Hg atmosphere (ex-situ) also shows resonant performance, but indicates significant shunting due the mirror layers. There is good agreement with model data, and the peak responsivity due to the absorber layer is 9.5×103 V/W for a 100 'm ×100 'm photoconductor at 80K. An effective lifetime of 50.4 ns is extracted for this responsivity measurement. The responsivity was measured as a function of varying field, and sweepout was observed for bias fields greater than 50 V/cm. The effective lifetime extracted from this measurement was 224 ns, but is an over estimate. Photodiodes were also fabricated by annealing p-type Hg(1x)Cd(x)Te for 10 hours at 250C in vacuum and type converting in a CH4/H2 reactive ion etch plasma process to form the n-p junction. There is some degradation to the mirror structure due to the anneal in vacuum, but a clear region of high reflection is observed. Measurements of current-voltage characteristics at various temperatures show diode-like characteristics with a peak R0 of 10 G measured at 80K (corresponding to an R0A of approximately 104 cm2. There was significant signal from the mirror layers, however only negligible signal from the absorber layer, and no conclusive resonant peaks.
15

Fourier transform and Vernier spectroscopy using optical frequency combs / Fouriertransform- och Vernierspektroskopi med optiska frekvenskammar

Khodabakhsh, Amir January 2017 (has links)
Optical frequency comb spectroscopy (OFCS) combines two previously exclusive features, i.e., wide optical bandwidth and high spectral resolution, enabling precise measurements of entire molecular bands and simultaneous monitoring of multiple gas species in a short measurement time. Moreover, the equidistant mode structure of frequency combs enables efficient coupling of the comb power to enhancement resonant cavities, yielding high detection sensitivities. Different broadband detection methods have been developed to exploit the full potential of frequency combs in spectroscopy, based either on Fourier transform spectroscopy or on dispersive elements.There have been two main aims of the research presented in this thesis. The first has been to improve the performance of mechanical Fourier transform spectrometers (FTS) based on frequency combs in terms of sensitivity, resolution and spectral coverage. In pursuit of this aim, we have developed a new spectroscopic technique, so-called noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), and achieved a shot-noise-limited sensitivity and low ppb (parts-per-billion, 10−9) CO2 concentration detection limit in the near-infrared range using commercially available components. We have also realized a novel method for acquisition and analysis of comb-based FTS spectra, a so-called sub-nominal resolution method, which provides ultra-high spectral resolution and frequency accuracy (both in kHz range, limited only by the stability of the comb) over the broadband spectral range of the frequency comb. Finally, we have developed an optical parametric oscillator generating a frequency comb in the mid-infrared range, where the strongest ro-vibrational molecular absorption lines reside. Using this mid-infrared comb and an FTS, we have demonstrated, for the first time, comb spectroscopy above 5 μm, measured broadband spectra of several species and reached low ppb detection limits for CH4, NO and CO in 1 s.The second aim has been more application-oriented, focused on frequency comb spectroscopy in combustion environments and under atmospheric conditions for fast and sensitive multispecies detection. We have demonstrated, for the first time, cavity-enhanced optical frequency comb spectroscopy in a flame, detected broadband high temperature H2O and OH spectra using the FTS in the near-infrared range and showed the potential of the technique for flame thermometry. For applications demanding a short measurement time and high sensitivity under atmospheric pressure conditions, we have implemented continuous-filtering Vernier spectroscopy, a dispersion-based spectroscopic technique, for the first time in the mid-infrared range. The spectrometer was sensitive, fast, robust, and capable of multispecies detection with 2 ppb detection limit for CH4 in 25 ms. / Optisk frekvenskamspektroskopi (OFCS) kombinerar två tidigare icke förenliga egenskaper, dvs. ett brett optiskt frekvensområde med en hög spektral upplösning, vilket möjliggör noggranna mätningar av hela molekylära absorptionsband och detektion av flera gaser samtidigt med en kort mättid. Eftersom frekvenskammar har en regelbunden struktur med jämnt separerade laser moder kan man effektivt koppla kammen till en optisk kavitet och därmed möjliggöra frekvenskamsdetektion med hög känslighet. Olika metoder har utvecklats för att utnyttja frekvenskammarnas fulla potential för spektroskopi, baserad på antingen Fouriertransform-spektroskopi eller dispersiva element.Forskningen som presenteras i denna avhandling har haft två huvudmål. Det första har varit att förbättra prestandan hos mekaniska Fourier-transformspektrometrar (FTS) baserat på frekvenskammar med avseende på känslighet, upplösning och spektral täckning. I strävan efter detta har vi utvecklat en ny spektroskopisk teknik, benämnd brusimmun kavitetsförstärkt optisk frekvenskamspektroskopi (NICE-OFCS), och uppnått en hagelbrusbegränsad känslighet och detektionsgränser ner till låga ppb koncentrationer (miljarddelar, 10−9) för CO2 i det när-infraröda frekvensområdet enbart med användning av kommersiellt tillgängliga komponenter. Vi har också utvecklat en ny metod för insamling och analys av kambaserade FTS-spektra, som betecknas ha sub-nominell upplösning. Metoden gör det möjligt att uppnå ultrahög spektral upplösning och hög frekvensnoggrannhet (båda i kHz-området, endast begränsad av kammens stabilitet) över kammens hela frekvensområde. Slutligen har vi utvecklat en optisk parametrisk oscillator som genererar en frekvenskam i det mid-infraröda frekvensområdet, där de starkaste rotations-vibrationsmolekylära absorptionslinjerna finns. Med hjälp av denna kam och en FTS har vi för första gången demonstrerat frekvenskamspektroskopi över 5 μm. Vi har detekterat bredbandsspektra av flera molekylära gaser och har, för mättider på 1 s, uppnått detektionsgränser ner till låga ppb halter för CH4, NO och CO.Det andra syftet har varit mer applikationsorienterat: att använda frekvenskamspektroskopi i förbränningsmiljö och under atmosfäriska förhållanden för snabb och känslig multiämnesdetektion. Vi har för första gången demonstrerat kavitetsförstärkt optisk frekvenskamspektroskopi i en flamma, där vi har detekterat högtemperaturspektra av H2O och OH i det när-infraröda området med användning av FTS och visat teknikens potential för termometrisk karakterisering av flammor. För applikationer som kräver en kort mättid och hög känslighet under atmosfäriska förhållanden har vi utvecklat ett detektionssystem baserat på Vernier-spektroskopi med kontinuerlig filtrering, vilket är en dispersionsbaserad teknik, för första gången i det mid-infraröda frekvensområdet. Det befanns att spektrometern var känslig, snabb, robust och kapabel till multiämnesdetektion med en detektionsgräns på 2 ppb för CH4 för korta mättider (25 ms).
16

Modelagem de dispositivos ópticos em escala nanométrica / Modeling of optical devices in nano scale

Diniz, Lorena Orsoni 06 October 2010 (has links)
Dispositivos fotônicos têm estado continuamente no foco das pesquisas científicas, particularmente em aplicações para comunicações ópticas e sensoriamento. Por outro lado, as dimensões desses dispositivos são restringidas pelo limite de difração de Abbe. Esse limite tem se mostrado como o grande gargalo no desenvolvimento de novas tecnologias em microscopia óptica, litografia de projeção óptica, óptica integrada, e armazenamento óptico de dados, por limitar as dimensões e a capacidade de integração destes dispositivos. Felizmente, a \"plasmônica\" surgiu como um novo campo de estudo, possibilitando a superação dessa limitação por meio da propagação da luz em modos de plasmon-poláritons de superfície - SPP (Surface Plasmon Polariton). De maneira simplificada, SPPs são campos eletromagnéticos confinados em regiões menores que o comprimento de onda da luz. A geração de SPP ocorre por meio da excitação coletiva de elétrons na interface entre dois meios, metal-dielétrico, que se acoplam com a onda eletromagnética incidente. Pesquisadores logo perceberam que guias de onda baseados em SPP poderiam transportar a mesma banda de informação que um dispositivo fotônico convencional e serem tão localizados quanto dispositivos eletrônicos (elétrons têm maior capacidade de confinamento que fótons). Dessa maneira, alterando a estrutura da superfície de um metal, as propriedades dos SPPs - em particular sua interação com a luz - podem ser manipuladas, oferecendo potencial para o desenvolvimento de novos tipos de dispositivos fotônicos. Com isso, nanoestruturas capazes de guiar, dividir ou mesmo sintonizar a luz tornaram-se realidade. No presente trabalho, o fenômeno de geração de SPPs é estudado teoricamente e aplicado na modelagem de diversas estruturas de interesse científico e tecnológico, tais como filtros de cavidade ressonante e ressoadores em anel. O objetivo principal é a obtenção de estruturas capazes de filtrar ou sintonizar comprimentos de onda, minimizando as perdas ao máximo. Com isso, espera-se estender e explorar ainda mais o leque de possíveis aplicações. / Photonic devices have continuously been in the focus of scientific research, particularly for optical communications and sensing applications. On the other hand, the dimensions of these devices are well known to be limited by the Abbe\'s diffraction limit. This limit has been the major bottleneck in developing new technologies in optical microscopy, lithography projection optics, integrated optics, and optical data storage, as it limits the size and ability to integrate these devices. Fortunately, the field of \"Plasmonics\" has emerged and devices whose dimensions overcome the difraction limit have now become reality. This is possible with the propagation of light in the form of Surface Plasmon Polariton - SPP that, in a simplified way, is an electromagnetic field confined in regions smaller than the wavelength of light. SPP occurs via collective excitation of electrons at the interface between two media, metal-dielectric, as a result of the coupling with an incident electromagnetic wave. Researchers soon realized that waveguides based on SPP could carry the same band of information as that of a conventional photonic device and yet be as localized as electronic devices (electrons have a greater capacity for confinement than photons). Thus, changing the structure of the surface of a metal, the properties of SPPs - in particular its interaction with light - can be manipulated, offering potential for the development of new types of photonic devices. Thus, nanostructures capable of transferring, guiding, splitting, or even tuning the light have now become reality. In this work, the phenomenon of generation of SPPs is theoretically investigated and applied to various structures of scientific and technological interest, such as filters and cavity resonators. The main objective is to obtain structures that are able to filter or tune wavelengths, minimizing losses as much as possible. As a result, we expect to extend and explore even further the range of possible applications.
17

Modelagem de dispositivos ópticos em escala nanométrica / Modeling of optical devices in nano scale

Lorena Orsoni Diniz 06 October 2010 (has links)
Dispositivos fotônicos têm estado continuamente no foco das pesquisas científicas, particularmente em aplicações para comunicações ópticas e sensoriamento. Por outro lado, as dimensões desses dispositivos são restringidas pelo limite de difração de Abbe. Esse limite tem se mostrado como o grande gargalo no desenvolvimento de novas tecnologias em microscopia óptica, litografia de projeção óptica, óptica integrada, e armazenamento óptico de dados, por limitar as dimensões e a capacidade de integração destes dispositivos. Felizmente, a \"plasmônica\" surgiu como um novo campo de estudo, possibilitando a superação dessa limitação por meio da propagação da luz em modos de plasmon-poláritons de superfície - SPP (Surface Plasmon Polariton). De maneira simplificada, SPPs são campos eletromagnéticos confinados em regiões menores que o comprimento de onda da luz. A geração de SPP ocorre por meio da excitação coletiva de elétrons na interface entre dois meios, metal-dielétrico, que se acoplam com a onda eletromagnética incidente. Pesquisadores logo perceberam que guias de onda baseados em SPP poderiam transportar a mesma banda de informação que um dispositivo fotônico convencional e serem tão localizados quanto dispositivos eletrônicos (elétrons têm maior capacidade de confinamento que fótons). Dessa maneira, alterando a estrutura da superfície de um metal, as propriedades dos SPPs - em particular sua interação com a luz - podem ser manipuladas, oferecendo potencial para o desenvolvimento de novos tipos de dispositivos fotônicos. Com isso, nanoestruturas capazes de guiar, dividir ou mesmo sintonizar a luz tornaram-se realidade. No presente trabalho, o fenômeno de geração de SPPs é estudado teoricamente e aplicado na modelagem de diversas estruturas de interesse científico e tecnológico, tais como filtros de cavidade ressonante e ressoadores em anel. O objetivo principal é a obtenção de estruturas capazes de filtrar ou sintonizar comprimentos de onda, minimizando as perdas ao máximo. Com isso, espera-se estender e explorar ainda mais o leque de possíveis aplicações. / Photonic devices have continuously been in the focus of scientific research, particularly for optical communications and sensing applications. On the other hand, the dimensions of these devices are well known to be limited by the Abbe\'s diffraction limit. This limit has been the major bottleneck in developing new technologies in optical microscopy, lithography projection optics, integrated optics, and optical data storage, as it limits the size and ability to integrate these devices. Fortunately, the field of \"Plasmonics\" has emerged and devices whose dimensions overcome the difraction limit have now become reality. This is possible with the propagation of light in the form of Surface Plasmon Polariton - SPP that, in a simplified way, is an electromagnetic field confined in regions smaller than the wavelength of light. SPP occurs via collective excitation of electrons at the interface between two media, metal-dielectric, as a result of the coupling with an incident electromagnetic wave. Researchers soon realized that waveguides based on SPP could carry the same band of information as that of a conventional photonic device and yet be as localized as electronic devices (electrons have a greater capacity for confinement than photons). Thus, changing the structure of the surface of a metal, the properties of SPPs - in particular its interaction with light - can be manipulated, offering potential for the development of new types of photonic devices. Thus, nanostructures capable of transferring, guiding, splitting, or even tuning the light have now become reality. In this work, the phenomenon of generation of SPPs is theoretically investigated and applied to various structures of scientific and technological interest, such as filters and cavity resonators. The main objective is to obtain structures that are able to filter or tune wavelengths, minimizing losses as much as possible. As a result, we expect to extend and explore even further the range of possible applications.
18

Caractérisation de couches diélectriques et magnétiques de structures multicouches par cavité résonante microonde / Characterization of magnetic and dielectric layers of multilayer structures using microwave resonant cavity

Dib, Radwan 23 October 2014 (has links)
Cette thèse s’intéresse à la caractérisation de couches diélectriques et magnétiques de structures multicouches par cavité résonante microonde. Les matériaux multicouches ont des propriétés électromagnétiques spécifiques et sont utilisés dans beaucoup de secteurs industriels, par exemple, dans les radiocommunications. La caractérisation électromagnétique reste une priorité pour la compréhension des caractéristiques de propagation des ondes électromagnétiques dans ces milieux. Dans ce travail de thèse nous proposons une nouvelle approche expérimentale pour déterminer les propriétés diélectriques effectives d’une structure multicouches en fonction des propriétés et de l’épaisseur de chacune des couches. En particulier, nous appliquons les expressions de permittivités issues de la méthode des perturbations utilisée en cavité résonante au cas d’un échantillon rectangulaire bicouche. L’analyse théorique établie a montré qu’une expression de simple proportionnalité reliant les propriétés diélectriques moyennes d’un matériau bicouche avec les propriétés diélectriques relatives et les épaisseurs des couches constituantes peut être obtenue. Cette méthode a été appliquée avec succès sur différents matériaux bicouches. En particulier, elle a permis la caractérisation d’une couche de YIG d’épaisseur très mince (19.6 μm) déposée par pulvérisation cathodique sur un substrat d’alumine en connaissant l’épaisseur et les propriétés diélectriques du substrat. La comparaison avec les résultats expérimentaux a révélé un bon accord entre théorie et mesure. L’analyse de l’incertitude associée au calcul de la permittivité par la méthode a montré une bonne sensibilité. Enfin, nous donnons les courbes de variation de la perméabilité effective mesurée pour un empilement bicouche avec une couche mince de YIG / This thesis aimed at characterizing the dielectric and magnetic layers of multilayer structures by using the technique of microwave resonant cavity. Multilayer structures have specific electromagnetic properties and are becoming increasingly important in many industrial domains, such as in radio-communication systems. The electromagnetic characterization remains a priority for understanding the characteristics of electromagnetic wave propagation in such environments. The thesis proposed a new experimental approach to determine the effective dielectric properties in a bilayer structure as a function of the characteristics and thickness of each specific layer. In particular, we apply the expressions of permittivities derived from the perturbations method which are used in resonant cavities in case of a bilayer rectangular sample. The established theoretical analysis leads us to propose a new expression of simple proportionality describing a relationship between the mean dielectric properties of a bilayer material and the relative dielectric properties and thickness of the constituent layers. The presented method has been successfully applied to different bilayer materials. Particularly, it allowed the characterization of a very thin layer (YIG layer) of thickness 19.6 microns deposited by cathodic sputtering on an alumina substrate by knowing the thickness and dielectric properties of this substrate. The comparison with the experimental results revealed good agreement between theory and measurement. The analysis of the uncertainty associated to the calculation of the permittivity by the presented method showed good sensitivity. Finally, we provide the curves of variation of the effective permeability measured for a bilayer stack
19

Silicon based microcavity enhanced light emitting diodes

Potfajova, J. January 2009 (has links)
Realising Si-based electrically driven light emitters in a process technology compatible with mainstream microelectronics CMOS technology is key requirement for the implementation of low-cost Si-based optoelectronics and thus one of the big challenges of semiconductor technology. This work has focused on the development of microcavity enhanced silicon LEDs (MCLEDs), including their design, fabrication, and experimental as well as theoretical analysis. As a light emitting layer the abrupt pn-junction of a Si-diode was used, which was fabricated by ion implantation of boron into n-type silicon. Such forward biased pn-junctions exhibit room-temperature EL at a wavelength of 1138 nm with a reasonably high power efficiency of 0.1% [1]. Two MCLEDs emitting light at the resonant wavelength about 1150 nm were demonstrated: a) 1 MCLED with the resonator formed by 90 nm thin metallic CoSi2 mirror at the bottom and semitranparent distributed Bragg reflector (DBR) on the top; b) 5:5 MCLED with the resonator formed by high reflecting DBR at the bottom and semitransparent top DBR. Using the appoach of the 5:5 MCLED with two DBRs the extraction efficiency is enhanced by about 65% compared to the silicon bulk pn-junction diode.:List of Abbreviations and Symbols 1 Introduction and motivation 2 Theory 2.1 Electronic band structure of semiconductors 2.2 Light emitting diodes (LED) 2.2.1 History of LED 2.2.2 Mechanisms of light emission 2.2.3 Electrical properties of LED 2.2.4 LED e ciency 2.3 Si based light emitters 2.4 Microcavity enhanced light emitting pn-diode 2.4.1 Bragg reflectors 2.4.2 Fabry-Perot resonators 2.4.3 Optical mode density and emission enhancement in coplanar Fabry-Perot resonator 2.4.4 Design and optical properties of a Si microcavity LED 3 Preparation and characterisation methods 3.1 Preparation techniques 3.1.1 Thermal oxidation of silicon 3.1.2 Photolithography 3.1.3 Wet chemical cleaning and etching 3.1.4 Ion implantation 3.1.5 Plasma Enhanced Chemical Vapour Deposition (PECVD) of silicon nitride 3.1.6 Magnetron sputter deposition 3.2 Characterization techniques 3.2.1 Variable Angle Spectroscopic Ellipsometry (VASE) 3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 3.2.3 Microscopy 3.2.4 Electroluminescence and photoluminescence measurements 4 Experiments, results and discussion 4.1 Used substrates 4.1.1 Silicon substrates 4.1.2 Silicon-On-Insulator (SOI) substrates 4.2 Fabrication and characterization of distributed Bragg reflectors 4.2.1 Deposition and characterization of SiO2 4.2.2 Deposition of Si 4.2.3 Distributed Bragg Reflectors (DBR) 4.2.4 Conclusions 4.3 Design of Si pn-junction LED 4.4 Resonant microcavity LED with CoSi2 bottom mirror 4.4.1 Device preparation 4.4.2 Electrical Si diode characteristics 4.4.3 EL spectra 4.4.4 Conclusions 4.5 Si based microcavity LED with two DBRs 4.5.1 Test device 4.5.2 Device fabrication 4.5.3 LED on SOI versus MCLED 4.5.4 Conclusions 5 Summary and outlook 5.1 Summary 5.2 Outlook A Appendix A.1 The parametrization of optical constants A.1.1 Kramers-Kronig relations A.1.2 Forouhi-Bloomer dispersion formula A.1.3 Tauc-Lorentz dispersion formula A.1.4 Sellmeier dispersion formula A.2 Wafer holder List of publications Acknowledgements Declaration / Versicherung
20

Practical And Reliable Wireless Power Supply Design For Low Power Implantable Medical Devices

Christopher J Quinkert (9755558) 14 December 2020 (has links)
<p>Implantable wireless devices are used to treat a variety of diseases that are not able to be treated with pharmaceuticals or traditional surgery, These implantable devices have use in the treatment of neurological disorders like epilepsy, optical disorders such as glaucoma, or injury related issues such as targeted muscle reinnervation. These devices can rely upon harvesting power from an inductive wireless power source and batteries. Improvements to how well the devices utilize this power directly increase the efficacy of the device operation as well as the device's lifetime, reducing the need for future surgeries or implantations. </p> <p> I have designed an improvement to cavity resonator based wireless power by designing a dynamic impedance matching implantable power supply, capable of tracking with device motion throughout a changing magnetic field and tracking with changing powering frequencies. This cavity resonator based system presents further challenges practically in the turn-on cycle of the improved device. </p> <p> I further design a coil-to-coil based wireless power system, capable of dynamically impedance matching a high quality factor coil to optimize power transfer during steady state, while also reducing turn-on transient power required in dynamic systems by utilizing a second low quality factor coil. This second coil has a broadband response and is capable of turning on at lower powers than that of the high quality factor coil. The low quality factor coil powers the circuitry that dynamically matches the impedance of the high quality factor coil, allowing for low power turn on while maintaining high power transfer at all operating frequencies to the implantable device. </p> <p> Finally, an integrated circuit is designed, fabricated, and tested that is capable of smoothly providing regulated DC power to the implantable device by stepping up from wireless power to a reasonable voltage level or stepping down from a battery to a reasonable voltage level for the device. The chip is fabricated in 0.18um CMOS process and is capable of providing power to the "Bionode" implantable device. </p>

Page generated in 0.0954 seconds