Spelling suggestions: "subject:"retained austenite"" "subject:"retained austenites""
11 |
[en] QUENCHING AND PARTITIONING OF NI-ADDED HIGH STRENGTH STEELS: KINETICS MODELLING MICROSTRUCTURE AND MECHANICAL PROPERTIES / [pt] TÊMPERA E PARTIÇÃO EM AÇOS DE ALTA RESISTÊNCIA CONTENDO NI: MODELAGEM CINÉTICA, MICROESTRUTURA E PROPRIEDADES MECÂNICASANA ROSA FONSECA DE AGUIAR MARTINS 03 December 2007 (has links)
[pt] Aços de alta resistência contendo frações significativas de
austenita retida têm alcançado grande interesse comercial
principalmente quando associados ao fenômeno TRIP durante o
processo de conformação final. Recentemente, um novo
conceito de tratamento térmico, denominado Têmpera e
Partição, vem sendo estudado como mais uma alternativa no
desenvolvimento de aços multifásicos. Neste processo, o
controle da fração volumétrica da austenita retida é
possível uma vez que durante o tratamento de partição, a
supersaturação de carbono na martensita temperada é
utilizada para estabilizar a austenita não transformada,
evitando assim transformações futuras que poderiam ocorrer
em temperaturas mais baixas. A seqüência de processamento
térmico envolve o tratamento de têmpera numa faixa de
temperatura entre Ms e Mf, seguido de partição numa
temperatura igual ou superior à temperatura de têmpera. A
partição do carbono da martenista para a austenita é
possível caso reações competitivas, como por exemplo, a
precipitação de carbetos, sejam suprimidas pela adição de
elementos de liga tais como Si e/ou Al. Uma condição básica
para o modelo está relacionada à restrição de movimentação
da interface martensita/austenita, uma vez que a difusão em
temperaturas baixas está limitada aos átomos interticiais.
Essa restrição leva a um novo conceito de equilíbrio
denominado Equilíbrio Constrito de Carbono, que é
caracterizado pela igualdade do potencial químico na
interface austenita-martensita apenas para o carbono. Nesse
trabalho foram desenvolvidos quatro aços, contendo
diferentes percentuais de C e Ni e com a presença dos
elementos Si, Mn, Mo e Cr. A adição desses elementos teve
finalidade reduzir a temperatura Bs, visando desacoplar o
tratamento de têmpera e partição de uma eventual
transformação bainítica. Um conjunto de condições para o
tratamento de têmpera e partição foi então desenhado,
envolvendo diferentes temperaturas de têmpera e diferentes
temperaturas e tempos de partição. A avaliação
microestrutural foi realizada utilizando recursos de
microscopia ótica e microscopia eletrônica de varredura e
de transmissão. A técnica de difração de raios-X foi
empregada para quantificar a fração de austenita retida e
seu enriquecimento em carbono. Foi modelado o processo de
partição do carbono utilizando o programa DICTRATM. Os
resultados dessas simulações foram analisados em termos dos
parâmetros microestruturais, do tempo e da temperatura, e
como essa combinação influência a cinética de partição do
carbono. Os resultados obtidos para as amostras ensaiadas
em tração indicaram uma vasta combinação de resistência
e ductilidade, confirmando o potencial do processo na
otimização das propriedades mecânicas. / [en] High strength steels containing significant fractions of
retained austenite have been developed in recent years and
are the subject of growing commercial interest when
associated with the TRIP phenomenon during deformation. A
new process concept, Quenching and Partitioning, has been
recently proposed for production of steel microstructures
containing carbon-enriched austenite. The heat treatment
sequence involves quenching to a temperature between the
martensite-start (Ms) and martensite-finish (Mf)
temperatures, followed by a partitioning treatment, above
or at the initial quench temperature, designed to enrich
the remaining untransformed austenite with the carbon
escaping from the supersaturated martensite phase, thereby
stabilizing the retained austenite phase during the
subsequent quench to room temperature. To enable the
austenite enrichment, competing reactions, principally
carbide precipitation, must be suppressed by appropriate
alloying elements, such as Si and/or Al. The concept
assumes a stationary martensite/austenite interface and the
absence of shortrange movements of iron and substitutionals
elements. The condition under which partitioning occur has
been called Constrained Carbon Equilibrium (ECC), due to
the restriction in movement of the interface and the
assumption that only carbon equilibrates its chemical
potencial at the interface. In this work, a group of four
alloys was investigated, containing different additions of
C and Ni and containing Si, Mn, Mo e Cr. These alloys were
designed to preclude bainite formation at the partitioning
temperatures of interest. Several heat-treatments, were
performed in these alloys, using the Q&P concept, to
evaluate its effect on the resulting microstructure and
mechanical properties. Each alloy was quenched at selected
temperatures and partitioned from 350 to 450°C for times
ranging from 10 to 1000s. Microstructural characterization
was performed by optical microcoscopy, scanning and
transmission electron microscopy, while X-ray diffraction
was used to determine both the fraction and the carbon
content of the retained austenite. Partitioning kinetics
were simulated with DICTRATM. The results were analyzed
taking into consideration the scale of the microstructure,
as well as the partitioning temperature. Tensile test
results indicated that very high levels of strength with
moderate toughness can be achieved confirming the potential
of the Q&P to produce a superior combination of mechanical
properties.
|
12 |
Analýza deformačně indukovaných změn fázového složení oceli TRIP metodou EBSD / Analysis of Strain - induced Variations of Phase Composition of the TRIP Steel using EBSD MethodPešina, Zbyněk January 2008 (has links)
The diploma thesis deals with phase composition measurement of the TRIP steel, using EBSD method. The steel was delivered as thermo-mechanically treated via two different routes. The phase composition of the steel was examined during gradual plastic deformation in the range 0 to10.99%. One route of thermo-mechanical treatment exhibited good agreement with the literature in terms of measured fraction of the retained austenite (15.6%) as well as its decrease during the deformation (to 8.9% at the maximum imposed strain). The samples of the second route did not show any agreement in either of the parameters spoken.
|
13 |
Investigation of Microstructural Effects in Rolling Contact FatigueDallin S Morris (11185158) 30 July 2021 (has links)
<p>Rolling
contact fatigue (RCF) is a common cause of failure in tribological
machine
components such as rolling-element bearings (REBs). Steels selected for RCF applications are
subject to various material processes in order to produce martensitic
microstructures. An effect of such
material processing is the retention of the austenitic phase within the steel
microstructure. Retained austenite (RA)
transformation in martensitic steels subjected to RCF is a well-established
phenomenon. In this investigation, a
novel approach is developed to predict martensitic transformations of RA in steels
subjected to RCF. A criteria for phase
transformations is developed by comparing the required thermodynamic driving
force for transformations to the energy dissipation in the microstructure. The method combines principles from phase
transformations in solids with a damage mechanics framework to calculate energy
availability for transformations. The
modeling is then extended to incorporate material alterations as a result of RA
transforming within the material. A continuum
damage mechanics (CDM) FEM simulation is used to capture material
deterioration, phase transformations, and the formation of internal stresses as
a result of RCF. Crystal lattice
orientation is included to modify energy requirements for RA transformation. Damage laws are modified to consider residual
stresses and different components of the stress state as the drivers of energy dissipation. The resulting model is capable of capturing
microstructural evolution during RCF.</p>
<p>The development and stability of
internal stresses caused by RA transformation in bearing steel material was
experimentally investigated. Specimens
of 8620 case carburized steel were subjected to torsional fatigue at specific
stress levels for a prescribed number of cycles. X-ray diffraction techniques were used to
measure residual stress and RA volume fraction as a function of depth in the
material. A model is set forth to
predict compressive residual stress in the material as a function of RA
transformation and material relaxation.
Modeling results are corroborated with experimental data. In addition, varying levels of retained austenite (RA) were
achieved through varying undercooling severity in uniformly treated case
carburized 8620 steel. Specimens were
characterized via XRD and EBSD techniques to determine RA volume fraction and
material characteristics prior to rolling contact fatigue (RCF). Higher RA volume fractions did not lead to
improvement in RCF lives. XRD
measurements after RCF testing indicated that little RA decomposition had
occurred during RCF. The previously
established RCF simulations were modified to investigate the effects of RA
stability on RCF. The results obtained
from the CDM FEM captured similar behavior observed in the experimental
results. Utilizing the developed model,
a parametric study was undertaken to examine the effects of RA quantity, RA
stability, and applied pressure on RCF performance. The study demonstrates that the energy
requirements to transform the RA phase is critical to RCF performance.</p>
|
14 |
Strain Path Effect on Austenite Transformation and Ductility in TBF 1180 SteelGibbs, Parker Kenneth 01 March 2019 (has links)
TBF 1180 steel was studied under various conditions focusing on the correlation of ductility and amount of retained austenite. Samples were prepared from sheet stock and then strained using limiting dome height tooling (LDH), a standard uniaxial test frame, and a tensile stage for use in an electron microscope. The steel was observed in plane, biaxial, and uniaxial strain to determine its effect on retained austenite transformation and ultimately, ductility. Retained austenite was observed using a scanning electron microscope (SEM) equipped with an electron backscatter detector (EBSD) to distinguish the different phases present. Initial austenite levels were around 5% by volume and was quickly reduced as the sample was strained. The biaxial samples were the slowest to transform, having about 2.5% austenite at .05 effective strain, which allowed the specimen to reach an effective strain of .3 with 1.1% austenite remaining. In contrast, the plane strain samples had the fastest rate of transformation having only 1.2% austenite at .05 effective strain and .7% austenite at a final effective strain of .18. Both forms of uniaxial, (in-situ and ex-situ), were near identical, as expected, and exhibited an austenite transformation curve between that of the plane and biaxial curves. The uniaxial austenite level at .05 strain was 2.1% and was able to reach about .15 strain with a final austenite percentage around 1%. It was concluded that the biaxial strain path had the greatest ductility due in part to its slower austenite transformation rate while plane and uniaxial strain paths were not as ductile with their faster austenite transformation rates.
|
15 |
Advanced High Strength Steel Through Paraequilibrium Carbon Partitioning and Austenite StabilizationQu, Hao January 2011 (has links)
No description available.
|
16 |
Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processesGeorges, Cédric 28 August 2008 (has links)
For ecological reasons, the current main challenge of the automotive industry is to reduce the fuel consumption of vehicles and then emissions of greenhouse gas. In this context, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as TRIP steels. A combination of high strength and large elongation is obtained thanks to the TRansformation Induced Plasticity (TRIP) effect. However, improvement of the mechanical properties is still possible, especially by the refinement of the matrix. In this work, two main ways were followed in order to reach improved properties. The classical way consisting of the annealing of cold-rolled samples and an innovative way consisting of obtaining the desired microstructure by direct hot rolling of the samples. In the classical way, this refinement can be obtained by acting on the chemical composition (with such alloying elements like Cu and Nb). It was observed that complete recrystallisation of the ferrite matrix is quite impossible in presence of Cu precipitates. In addition, if the ferrite recrystallisation is not completed before reaching the eutectoid temperature, the recrystallisation will be slowed down by a large way. An innovative heat treatment consisting in keeping the copper in solid solution in the high-Cu steel was developed. Therefore, ferrite recrystallises quite easily and very fine ferrite grains (~1µm) were obtained. In the innovative way, the effects of hot-rolling conditions on TRIP-assisted multiphase steels are of major importance for industrial practice and could open new dimensions for the TRIP steels (i.e. thanks to precipitation mechanisms leading to additive strengthening). Impressive mechanical properties (true stress at maximum load of 1500 MPa and true strain at uniform elongation of 0.22) were obtained with a relatively easy thermomechanical process, the role played by Nb being essential.
|
17 |
Influência da austenita retida no crescimento de trincas curtas superficiais por fadiga em camada cementada de aço SAE 8620 / The influence of retained austenite on short fatigue crack growth in case carburized SAE 8620 steelSilva, Valdinei Ferreira da 02 October 1997 (has links)
A austenita retida está sempre presente na microestrutura de camada cementada de aços, em maior ou menor quantidade. Como é uma fase dúctil comparada à martensita, sua presença tem sido alvo de muita controvérsia. Este trabalho apresenta um estudo sobre a influência da austenita retida na propagação de trincas curtas por fadiga em camada cementada de aço SAE 8620. Foram feitos ensaios de fadiga por flexão em quatro pontos, a temperatura ambiente, em corpos de prova sem entalhe com três níveis de amplitude de tensão e razão de tensões de 0,1. Através de diferentes ciclos de cementação e tratamentos térmicos, foram obtidas camadas cementadas com quatro níveis de austenita retida na microestrutura. O teor de austenita retida foi medido através da técnica de difração de Raios-X. Trincas superficiais foram monitoradas por meio da técnica de réplicas de acetato. Como resultados foram obtidos tamanho de trinca em função do número de ciclos e taxa de crescimento de trincas curtas. Corpos de prova com maiores níveis de austenita retida apresentaram maior vida em fadiga. / The retained austenite is always present in case carburized steel microstructure in small or high percentages. Since it is a ductile phase, its presence has long been a controversial subject. The influence of retained austenite on short fatigue crack propagation in case carburized SAE 8620 steel was studied in this work. Four-point-bend fatigue tests were carried out at room temperature in specimens without notch using three levels of stress range and a stress ratio of 0.1. Four different amount of retained austenite in the case carburized microstructure were obtained through different cycles of carburizing and heat treating. The retained austenite content was measured by X-ray technique, and the surface short crack growth was monitored by means of acetate replication technique. Crack length versus number of cycles and crack growth rate versus mean crack length were obtained as results. Specimens with higher levels of retained austenite in the carburized case showed longer fatigue life.
|
18 |
Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processesGeorges, Cédric 28 August 2008 (has links)
For ecological reasons, the current main challenge of the automotive industry is to reduce the fuel consumption of vehicles and then emissions of greenhouse gas. In this context, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as TRIP steels. A combination of high strength and large elongation is obtained thanks to the TRansformation Induced Plasticity (TRIP) effect. However, improvement of the mechanical properties is still possible, especially by the refinement of the matrix. In this work, two main ways were followed in order to reach improved properties. The classical way consisting of the annealing of cold-rolled samples and an innovative way consisting of obtaining the desired microstructure by direct hot rolling of the samples. In the classical way, this refinement can be obtained by acting on the chemical composition (with such alloying elements like Cu and Nb). It was observed that complete recrystallisation of the ferrite matrix is quite impossible in presence of Cu precipitates. In addition, if the ferrite recrystallisation is not completed before reaching the eutectoid temperature, the recrystallisation will be slowed down by a large way. An innovative heat treatment consisting in keeping the copper in solid solution in the high-Cu steel was developed. Therefore, ferrite recrystallises quite easily and very fine ferrite grains (~1µm) were obtained. In the innovative way, the effects of hot-rolling conditions on TRIP-assisted multiphase steels are of major importance for industrial practice and could open new dimensions for the TRIP steels (i.e. thanks to precipitation mechanisms leading to additive strengthening). Impressive mechanical properties (true stress at maximum load of 1500 MPa and true strain at uniform elongation of 0.22) were obtained with a relatively easy thermomechanical process, the role played by Nb being essential.
|
19 |
Quantitative characterization of microstructure in high strength microalloyed steelsLi, Xiujun Unknown Date
No description available.
|
20 |
Quantitative characterization of microstructure in high strength microalloyed steelsLi, Xiujun 11 1900 (has links)
X-ray diffraction (XRD) profile fitting (Rietveld method) was used in this study to characterize the microstructure for seven microalloyed steels, which were produced through thermomechanical controlled processing (TMCP). Microstructure characterization was conducted through the strip thickness. The microstructural variables studied include subgrain size, dislocation density, texture index and weight percent of retained austenite. The subgrain size was also analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The effects of processing parameters, including coiling temperature, cooling rate and alloying elements, on the microstructure were also investigated. It was found that decreasing the coiling temperature resulted in a finer subgrain size and higher dislocation densities. The texture index was observed to increase with decreasing coiling temperature. The subgrain size decreased and dislocation density increased as the amount of alloying elements (Ni, Mo and Mn) were increased. The amount of retained austenite increased at the strip center with increasing coiling temperature and increasing C and Ni content. / Materials Engineering
|
Page generated in 0.0581 seconds