Spelling suggestions: "subject:"reynolds averaged javier stokes (RANS)"" "subject:"reynolds averaged javier vstokes (RANS)""
1 |
A numerical investigation into the heave, sway and roll motions of typical ship like hull sections using RANS numerical methodsHenning, H. L. 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: The hydrodynamic characteristics of three typical ship-like hull sections, in
different motions, are numerically investigated using FLUENT, 2009. These
simple shapes, namely a v-bottom (triangle) hull, a at-bottom (square) hull
and a round-bottom (semi-circle) hull, are investigated in uncoupled heave,
sway and roll. The problem is described in two dimensions. A combination of
numerical methods and models, found in literature, are used to conduct this
investigation. Hull characterisation is achieved through the use of hull mass
and damping coe cients. These numerically determined coe cients are compared
to experimental work conducted by Vugts (1968). A good correlation
between the numerical and experimental results exists for the heave and sway
cases. By normalising the coe cients, different hulls are comparable to one
another. The numerical models used are validated and veri ed. Roll motion
remains largely unsolved for very large angles of roll (in excess of 11°). Different
uid ow phenomena occurring around the hull sections have varying
degrees of in uence on the motions of a hull. It is found that not one of the
turbulence models investigated can be employed to globally solve each type
of hull-motion case. Also, forced oscillations in computational simulations require
considerably more computational time than free-decay oscillating hull
simulations. / AFRIKAANSE OPSOMMING: Die hidrodinamiese karakteristieke van verskillende skeepsrompvorms, in verskeie
bewegingswieë, is numeries ondersoek met behulp van FLUENT, 2009.
Drie eenvoudige vorms ('n v-bodem (driehoek), plat-bodem (reghoek) en rondebodem
(semi-sirkel) romp) is onderskeidelik ondersoek in opwieg, dwarswieg en
rol. Die probleem is twee-dimensioneel. Daar is gebruik gemaak van 'n kombinasie
van numeriese metodes en modelle, uit die literatuur, om die ondersoek
uit te voer. Die rompe is gekarakteriseer met behulp van massa- en dempingskoëffi siënte. Hierdie numeries bepaalde koë ffisiënte is vergelyk met die
eksperimentele werk van Vugts (1968). Daar bestaan 'n goeie korrelasie tussen
die numeriese en eksperimentele resultate vir die opwieg en dwarswieg gevalle.
Die koë ffisiënte is genormaliseer om die verskeie rompvorms te vergelyk. Die
numeriese modelle is geverifi eer en valideer. Rolbewegings is onopgelos vir
groot rolhoeke (groter as 11°). Die mate waartoe die romp se beweging beïnvloed
word deur die verskillende vloei verskynsels wat om die rompe ontstaan,
verskil. Daar is bevind dat geen van die turbulensie modelle gebruik kan word
om alle skeepsbeweging-gevalle op te los nie. Gedwonge-ossilasie numeriese
simulasies benodig meer berekeningstyd as vrye-verval ossilasie gevalle.
|
2 |
Numerical modeling of a hydrofoil or a marine propeller undergoing unsteady motion via a panel method and RANSSharma, Abhinav, master of science in civil engineering 17 February 2012 (has links)
A computational approach to analyze the hydrodynamic performance of a hydrofoil or a marine propeller undergoing unsteady motion has been developed. In order to simulate heave and pitch motion of a hydrofoil, an unsteady boundary element method based modeling is performed. The wake of the hydrofoil is modeled by a continuous dipole sheet and determined in time by applying a force-free condition on its surface. An explicit vortex core model is adapted in this model to capture the rolling up shape and to avoid instability due to roll-up deformation of the wake. The numerical results of the developed model are compared with analytical results and those from the commercial Reynolds-Averaged Navier-Stokes solver (ANSYS/FLUENT). The results show close level of agreement with each other. The problem of flow around a marine propeller performing surge, roll and heave motion in an unbounded fluid is formulated and solved using both a vortex-lattice method and a boundary element method. A fully unsteady wake alignment algorithm is implemented into the vortex-lattice method in order to satisfy the force-free condition on the propeller wake surface. Finally, a comparative study of transient propeller forces on a propeller blade obtained from BEM and VLM (with or without fully aligned wake) is carried out and results are presented. In some cases, results from the presented methods are compared with those from RANS or other numerical methods available in the literature. / text
|
3 |
Low Reynolds Number Airfoil AerodynamicsSrinivasa Murthy, P 02 1900 (has links)
In this thesis we describe the development of Reynolds- averaged Navier Stokes code for the flow past two- dimensional configuration. Particularly, emphasis has been laid on the study of low Reynolds number airfoil aerodynamics.
The thesis consists of five chapters covering the back ground history, problem formulation, method of solution and discussion of the results and conclusion.
Chapter I deals with a detailed background history of low Reynolds number aerodynamics, problem associated with it, state of the art, its importance in practical applications in aircraft industries.
Chapter II describes the mathematical model of the flow physics and various levels of approximations. Also it gives an account of complexity of the equations at low Reynolds number regarding flow separation, transition and reattachment.
Chapter III describes method of solution, numerical algorithm developed, description of various upwind schemes, grid system, finite volume discrieti-zation of the governing equations described in Chapter II.
Chapter IV describes the application of the newly developed Navier Stokes code for the test cases from GAMM Workshop proceedings. Also it describes validation of the code for Euler solutions, Blasius solution for the flow past flat plate and compressible Navier Stokes solution for the flow past NACA 0012 Airfoil at low Reynolds number.
Chapter V describes the application of the Navier Stokes code for the more test cases of current practical interest . In this chapter laminar separation bubble characteristics are investigated in detail regarding formation, growth and shedding in an unsteady environment.
Finally the conclusion is drawn regarding the robustness of the newly developed code in predicting the airfoil aerodynamic characteristics at low Reynolds number both in steady and unsteady environment.
Lastly, suggestion for future work has been highlighted.
|
4 |
A Fundamental Study of Advance Ratio, Solidity, Turbine Radius, and Blade Profile on the Performance Characteristics of Vertical Axis Turbines (VATs)Norman, Adam Edward 26 July 2016 (has links)
In this dissertation, various VAT parameters are investigated to determine the effect of the overall efficiency of the turbine at a high Reynolds number. To increase the efficiency of the vertical axis turbines, 2D CFD simulations are completed in an effort to better understand the physics behind the operation of these turbines. Specifically, the effect of advance ratio, solidity, and wake interactions were investigated. Simulations were completed in OpenFOAM using the k-ω SST turbulence model at a nominal Reynolds number of 500,000 using a NACA 0015 airfoil. To simulate the motion of the turbine, Arbitrary Mesh Interfacing (AMI) was used. For all of the parameters tested, it was found that the geometric effective angle of attack seen by the turbine blades had a significant impact on the power extracted from the flow. The range of effective angles of attack was found to decrease as the advance ratio increased. In spite of this, a severe loss in the power coefficient occurred at an advance ratio of 2.5 during which the blade experienced dynamic stall. This effect was also seen when the number of turbine blades was changed to four, at a solidity of 1.08. This negative impact on performance was found to be due to the increase in the drag component of the tangential force when dynamic stall occurs. Results indicate that wake interactions between subsequent blades have a large impact on performance especially when the wake interaction alters the flow direction sufficiently to create conditions for dynamic stall.
To improve the performance of the VAT in the presence of dynamic stall, calculations were completed of a static twisted blade profile using GenIDLEST and OpenFOAM. There was found to be no improvement in the lift coefficient when comparing the twisted blade profile with a 2D blade at the same median angle of attack as the twisted blade. To further see the effects of the twisted blade, an effective VAT pitching motion was given to the blade and again compared to a 2D blade with the same motion. In this case there was significant improvement seen in the performance of the twisted blade. / Master of Science
|
5 |
Effect of Valve Seat Geometry on In-Cylinder Swirl : A Comparative Analysis Between Steady-State and Transient ApproachesLopes, António January 2024 (has links)
The urgent need to reduce green house gas emissions from the transport sector, particularly from heavy-duty trucks, has underscored the importance of developing more efficient internal combustion engines. Using computational fluid dynamics (CFD), this work investigated the impact of valve seat geometry on in-cylinder swirl, addressing a gap in research. Additionally, the suitability of steady-state simulations for providing valid qualitative data on port flow was assessed. To answer both research questions, two approaches were followed: steady-state port flow RANS simulations, and transient RANS simulations in a running engine setup. The results from the steady-state simulations highlighted the limitations of this approach to qualitatively predict swirl, as this quantity is highly dependent on the mesh. Despite these limitations, the steady-state simulations were still able to capture the trade-off between swirl and discharge coefficient, outlined in the literature. Transient simulations revealed that in-cylinder swirl is affected by the geometry of the valve seats. It was found that valve seats that direct the flow towards the liner, while avoiding strong flow separation tend to promote higher swirl, whereas valve seats that induce strong flow separation lead to lower swirl ratios. Despite the trade-off between swirl and volumetric efficiency, the volumetric efficiency losses were found to be practically negligible. The study emphasizes the need for a more comprehensive set of simulations, including more valve lifts and pressure ratios. Given the unsuitability of the steady-state simulations to predict swirl trends, future investigations should focus on replacing this approach by transient simulations with steady-state geometry and boundary conditions, properly addressing flow time-dependency at relatively low computational cost, and facilitating validation with experimental data.
|
6 |
Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy SimulationsBelmar Gil, Mario 21 January 2021 (has links)
[ES] El principal desafío en los motores turbina de gas empleados en aviación reside en aumentar la eficiencia del ciclo termodinámico manteniendo las emisiones contaminantes por debajo de las rigurosas restricciones. Ésto ha conllevado la necesidad de diseñar nuevas estrategias de inyección/combustión que operan en puntos de operación peligrosos por su cercanía al límite inferior de apagado de llama. En este contexto, el concepto Lean Direct Injection (LDI) ha emergido como una tecnología prometedora a la hora de reducir los óxidos de nitrógeno (NOx) emitidos por las plantas propulsoras de los aviones de nueva generación.
En este contexto, la presente tesis tiene como objetivos contribuir al conocimiento de los mecanismos físicos que rigen el comportamiento de un quemador LDI y proporcionar herramientas de análisis para una profunda caracterización de las complejas estructuras de flujo de turbulento generadas en el interior de la cámara de combustión. Para ello, se ha desarrollado una metodología numérica basada en CFD capaz de modelar el flujo bifásico no reactivo en el interior de un quemador LDI académico mediante enfoques de turbulencia U-RANS y LES en un marco Euleriano-Lagrangiano. La resolución numérica de este problema multi-escala se aborda mediante la descripción completa del flujo a lo largo de todos los elementos que constituyen la maqueta experimental, incluyendo su paso por el swirler y entrada a la cámara de combustión. Ésto se lleva a cabo través de dos códigos CFD que involucran dos estrategias de mallado diferentes: una basada en algoritmos de generación y refinamiento automático de la malla (AMR) a través de CONVERGE y otra técnica de mallado estático más tradicional mediante OpenFOAM.
Por un lado, se ha definido una metodología para obtener una estrategia de mallado óptima mediante el uso del AMR y se han explotado sus beneficios frente a los enfoques tradicionales de malla estática. De esta forma, se ha demostrado que la aplicabilidad de las herramientas de control de malla disponibles en CONVERGE como el refinamiento fijo (fixed embedding) y el AMR son una opción muy interesante para afrontar este tipo de problemas multi-escala. Los resultados destacan una optimización del uso de los recursos computacionales y una mayor precisión en las simulaciones realizadas con la metodología presentada.
Por otro lado, el uso de herramientas CFD se ha combinado con la aplicación de técnicas de descomposición modal avanzadas (Proper Orthogonal Decomposition and Dynamic Mode Decomposition). La identificación numérica de los principales modos acústicos en la cámara de combustión ha demostrado el potencial de estas herramientas al permitir caracterizar las estructuras de flujo coherentes generadas como consecuencia de la rotura de los vórtices (VBB) y de los chorros fuertemente torbellinados presentes en el quemador LDI. Además, la implementación de estos procedimientos matemáticos ha permitido tanto recuperar información sobre las características de la dinámica de flujo como proporcionar un enfoque sistemático para identificar los principales mecanismos que sustentan las inestabilidades en la cámara de combustión.
Finalmente, la metodología validada ha sido explotada a través de un Diseño de Experimentos (DoE) para cuantificar la influencia de los factores críticos de diseño en el flujo no reactivo. De esta manera, se ha evaluado la contribución individual de algunos parámetros funcionales (el número de palas del swirler, el ángulo de dichas palas, el ancho de la cámara de combustión y la posición axial del orificio del inyector) en los patrones del campo fluido, la distribución del tamaño de gotas del combustible líquido y la aparición de inestabilidades en la cámara de combustión a través de una matriz ortogonal L9 de Taguchi. Este estudio estadístico supone un punto de partida para posteriores estudios de inyección, atomización y combus / [CA] El principal desafiament als motors turbina de gas utilitzats a la aviació resideix en augmentar l'eficiència del cicle termodinàmic mantenint les emissions contaminants per davall de les rigoroses restriccions. Aquest fet comporta la necessitat de dissenyar noves estratègies d'injecció/combustió que radiquen en punts d'operació perillosos per la seva aproximació al límit inferior d'apagat de flama. En aquest context, el concepte Lean Direct Injection (LDI) sorgeix com a eina innovadora a l'hora de reduir els òxids de nitrogen (NOx) emesos per les plantes propulsores dels avions de nova generació.
Sota aquest context, aquesta tesis té com a objectius contribuir al coneixement dels mecanismes físics que regeixen el comportament d'un cremador LDI i proporcionar ferramentes d'anàlisi per a una profunda caracterització de les complexes estructures de flux turbulent generades a l'interior de la càmera de combustió. Per tal de dur-ho a terme s'ha desenvolupat una metodología numèrica basada en CFD capaç de modelar el flux bifàsic no reactiu a l'interior d'un cremador LDI acadèmic mitjançant els enfocaments de turbulència U-RANS i LES en un marc Eulerià-Lagrangià. La resolució numèrica d'aquest problema multiescala s'aborda mitjançant la resolució completa del flux al llarg de tots els elements que constitueixen la maqueta experimental, incloent el seu pas pel swirler i l'entrada a la càmera de combustió. Açò es duu a terme a través de dos codis CFD que involucren estratègies de mallat diferents: una basada en la generación automàtica de la malla i en l'algoritme de refinament adaptatiu (AMR) amb CONVERGE i l'altra que es basa en una tècnica de mallat estàtic més tradicional amb OpenFOAM.
D'una banda, s'ha definit una metodologia per tal d'obtindre una estrategia de mallat òptima mitjançant l'ús de l'AMR i s'han explotat els seus beneficis front als enfocaments tradicionals de malla estàtica. D'aquesta forma, s'ha demostrat que l'aplicabilitat de les ferramente de control de malla disponibles en CONVERGE com el refinament fixe (fixed embedding) i l'AMR són una opció molt interessant per tal d'afrontar aquest tipus de problemes multiescala. Els resultats destaquen una optimització de l'ús dels recursos computacionals i una major precisió en les simulacions realitzades amb la metodologia presentada.
D'altra banda, l'ús d'eines CFD s'ha combinat amb l'aplicació de tècniques de descomposició modal avançades (Proper Orthogonal Decomposition and Dynamic Mode Decomposition). La identificació numèrica dels principals modes acústics a la càmera de combustió ha demostrat el potencial d'aquestes ferramentes al permetre caracteritzar les estructures de flux coherents generades com a conseqüència del trencament dels vòrtex (VBB) i dels raigs fortament arremolinats presents al cremador LDI. A més, la implantació d'estos procediments matemàtics ha permès recuperar informació sobre les característiques de la dinàmica del flux i proporcionar un enfocament sistemàtic per tal d'identificar els principals mecanismes que sustenten les inestabilitats a la càmera de combustió.
Finalment, la metodologia validada ha sigut explotada a traves d'un Diseny d'Experiments (DoE) per tal de quantificar la influència dels factors crítics de disseny en el flux no reactiu. D'aquesta manera, s'ha avaluat la contribución individual d'alguns paràmetres funcionals (el nombre de pales del swirler, l'angle de les pales, l'amplada de la càmera de combustió i la posició axial de l'orifici de l'injector) en els patrons del camp fluid, la distribució de la mida de gotes del combustible líquid i l'aparició d'inestabilitats en la càmera de combustió mitjançant una matriu ortogonal L9 de Taguchi. Aquest estudi estadístic és un bon punt de partida per a futurs estudis de injecció, atomització i combustió en cremadors LDI. / [EN] Aeronautical gas turbine engines present the main challenge of increasing the efficiency of the cycle while keeping the pollutant emissions below stringent restrictions. This has led to the design of new injection-combustion strategies working on more risky and problematic operating points such as those close to the lean extinction limit. In this context, the Lean Direct Injection (LDI) concept has emerged as a promising technology to reduce oxides of nitrogen (NOx) for next-generation aircraft power plants
In this context, this thesis aims at contributing to the knowledge of the governing physical mechanisms within an LDI burner and to provide analysis tools for a deep characterisation of such complex flows. In order to do so, a numerical CFD methodology capable of reliably modelling the 2-phase nonreacting flow in an academic LDI burner has been developed in an Eulerian-Lagrangian framework, using the U-RANS and LES turbulence approaches. The LDI combustor taken as a reference to carry out the investigation is the laboratory-scale swirled-stabilised CORIA Spray Burner. The multi-scale problem is addressed by solving the complete inlet flow path through the swirl vanes and the combustor through two different CFD codes involving two different meshing strategies: an automatic mesh generation with adaptive mesh refinement (AMR) algorithm through CONVERGE and a more traditional static meshing technique in OpenFOAM.
On the one hand, a methodology to obtain an optimal mesh strategy using AMR has been defined, and its benefits against traditional fixed mesh approaches have been exploited. In this way, the applicability of grid control tools available in CONVERGE such as fixed embedding and AMR has been demonstrated to be an interesting option to face this type of multi-scale problem. The results highlight an optimisation of the use of the computational resources and better accuracy in the simulations carried out with the presented methodology.
On the other hand, the use of CFD tools has been combined with the application of systematic advanced modal decomposition techniques (i.e., Proper Orthogonal Decomposition and Dynamic Mode Decomposition). The numerical identification of the main acoustic modes in the chamber have proved their potential when studying the characteristics of the most powerful coherent flow structures of strongly swirled jets in a LDI burner undergoing vortex breakdown (VBB). Besides, the implementation of these mathematical procedures has allowed both retrieving information about the flow dynamics features and providing a systematic approach to identify the main mechanisms that sustain instabilities in the combustor. Last, this analysis has also allowed identifying some key features of swirl spray systems such as the complex pulsating, intermittent and cyclical spatial patterns related to the Precessing Vortex Core (PVC).
Finally, the validated methodology is exploited through a Design of Experiments (DoE) to quantify the influence of critical design factors on the non-reacting flow. In this way, the individual contribution of some functional parameters (namely the number of swirler vanes, the swirler vane angle, the combustion chamber width and the axial position of the nozzle tip) into both the flow field pattern, the spray size distribution and the occurrence of instabilities in the combustion chamber are evaluated throughout a Taguchi's orthogonal array L9. Such a statistical study has supposed a good starting point for subsequent studies of injection, atomisation and combustion on LDI burners. / Belmar Gil, M. (2020). Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159882
|
7 |
Large Eddy Simulation of Multiphase FlowsDeevi, Sri Vallabha January 2015 (has links) (PDF)
Multiphase flows are a common phenomenon. Rains, sediment transport in rivers, snow and dust storms, mud slides and avalanches are examples of multiphase flows occurring in nature. Blood flow is an example of multiphase flow in the human body, which is of vital importance for survival. Multiphase flows occur widely in industrial applications from hydrocarbon extrac-tion to fuel combustion in engines, from spray painting to spray drying, evaporators, pumps and pneumatic conveying. Predicting multiphase flows is of vital importance to understand natural phenomenon and to design and improve industrial processes. Separated flows and dispersed flows are two types of multiphase flows, which occur together in many industrial applications. Physical features of these two classes are different and the transition from one to another involves complex flow physics.
Experimental studies of multiphase flows are not easy, as most real world phenomenon cannot be scaled down to laboratory models. Even for those phenomenon that can be demonstrated at lab-oratory scale, rescaling to real world applications requires mathematical models. There are many challenges in experimental measurements of multiphase flows as well. Measurement techniques well suited for single phase flows have constraints when measuring multiphase phenomenon. Un-certainty in experimental measurements poses considerable difficulties in validating numerical models developed for predicting these flows. Owing to the computational effort required, direct simulation of multiphase flows, even for small scale real world applications is out of present scope. Numerical methods have been developed for dealing with each class of flow separately, that in-volves use of models for phenomenon that is computationally demanding.
Reynolds Averaged Navier-Stokes (RANS) methods for predicting multiphase flows place strong requirements on turbulence models, as information about fluctuating quantities in the field, that have significant effects on dispersed phase, is not available. Large Eddy Simulation (LES) gives better predictions than RANS as the instantaneous field data is available and large scale unsteadiness that effects the dispersed phase can be captured. Recent LES studies of multiphase flows showed that the sub-grid-scale (SGS) model used for the continuous phase has an effect on the evolution of the dispersed phase.
In this work, LES of multiphase flows is performed using Explicit Filtering Large Eddy Sim-ulation method. In this method, spatial derivatives are computed using higher order compact schemes that have spectral-like resolution. SGS modeling is provided by the use of a filter with smoothly falling transfer function. This method is mathematically consistent and converges to a DNS as the grid is refined. It has been successfully applied to combustion and aero-acoustics and this work is the first application of the method to multiphase flows. Study of dispersed multiphase flows was carried out in this work. Modeling of the dispersed phase is kept simple since the in-tention was to evaluate the capability of explicit filtering LES method in predicting multiphase flows.
Continuous phase is solved using a compressible formulation with explicit filtering method. Spatial derivatives are computed using fourth and sixth order compact schemes that use derivative splitting method proposed by Hixon & Turkel (2000a) and second order Runge-Kutta (RK2) time stepping. The grid is stretched as needed. Non-reflecting boundary conditions due to Poinsot & Lele (1992) are used to avoid acoustic reflections from boundaries. Buffer zones (Bogey & Bailly (2002)) are employed at outflow and lateral boundaries to damp vortical structures. The code developed for continuous phase is evaluated by studying round jets at Re =36,000 and comparing with experimental measurements of Hussein et al. (1994) and Panchapakesan & Lumley (1993). Simulations showed excellent agreement with experimental results. Rate of decay of axial velocity and the evolution of turbulence intensities on the centerline matched very well with measurements. Radial profiles of mean and fluctuating components of velocities exhibit self-similarity. A set of studies were then performed using this code to assess the effect of numerical scheme, grid refinement & stretching and simulation times on the predictions. Results from these simulations showed good agreements with experiments and established the code for use in multiphase flows under various simulation conditions.
To assess the prediction of multiphase flows using this LES method, an evaporating spray ex-periment by Chen et al. (2006) was simulated. The experiment uses a nebuliser for generating a finely atomized spray of acetone, which avoids complex breakdown phenomenon associated with air blast atomizers and provides well defined boundary conditions for model evaluation. The neb-uliser sits upstream in a pipe carrying air and droplets travel along with air for a distance of 10 diameters before exiting into a wind tunnel with co-flowing air. Droplet breakdown, if any, takes place inside the pipe and the spray is finely atomized by the time it reaches pipe exit. One of the experimental cases at Re =31,600, with a mass loading of 1.1% and a jet velocity of 56 m/s is simulated. Particle size has a χsquared distribution with a Sauter mean diameter of 18µm. In the self-similar region, decay of centerline velocity and turbulence intensities matched well with ex-perimental results. Continuous phase exhibits self-similar behavior. A series of simulations were then performed to match the initial region of the spray by altering the inflow conditions in the sim-ulation. Simulation that matched the breakdown location of the experiment revealed the presence of a relaxation zone with a higher initial spreading rate, followed by a lower asymptotic spreading rate. Studies were performed to understand the effect of various phenomenon like evaporation and droplet size on this behavior.
A study of breakdown region of particle-laden jets was performed to understand the presence of relaxation zone post breakdown. Flow conditions were similar to evaporating spray experiment except that particles do not evaporate, mass loading is 2% and jet Reynolds number Re =2000. A series of grid refinements were performed and on the largest grid, gird spacing Δy =7.5η, where ηis an estimate of the Kolmogorov length scale based on flow conditions. Decay of axial velocity on the centerline showed variations with grid refinement, tending to the experimentally measured value as the grid is refined. Variation of turbulence intensities along the centerline revealed a jump in axial velocity fluctuations at the breakdown location, while radial and azimuthal velocities showed a smooth increase to their asymptotic value. This jump was resolved on grid refinement and on fine grids axial velocity fluctuations followed the other two quantities closely in their rise to asymptotic state. Comparison of these quantities with a jet without particles revealed that the flow features are same for a jet with and without particles, and at the mass loading studied, particles have negligible effect on jet breakdown. Another study performed at a higher Reynolds number of Re =11,000, under similar flow conditions showed similar behavior.
To assess the ability of predicting dispersed phase, simulations of particle-laden flows at low Stokes number were performed and compared against an experiment by Lau & Nathan (2014). The experiment studies variation of velocity and particle concentration along the centerline, and half widths of a jet velocity and concentration. Particles are injected into a pipe along with air, and the two phase flow is fully developed by the time it exits the pipe into a wind tunnel along with a co-flow. Particles are mono-disperse with a density of 1200 kg/m3. Mass loading is 40% so that particles have a significant effect on the continuous phase. Two cases at particle Stokes number of 1.4, one with Re =10,000, bulk velocity of 12 m/s and particle diameter of 20µm and another with Re =22,500, bulk velocity of 36 m/s and particle diameter of 10µm were simulated. Simulations of both the cases showed good match with experimental measurements of centerline decay for the continuous phase. For the dispersed case, simulations with larger particles showed good match with experimental results, while smaller particles showed differences. This was understood to be the effect of lateral migration which is prominent in case of smaller particles, the models for which have not been used in the present simulation study.
|
8 |
Comparative Hydrodynamic Testing of Small Scale ModelsAcosta, Jared 19 December 2008 (has links)
Early in the ship design process, naval architects must often evaluate and compare multiple hull forms for a specific set of requirements. Analytical tools are useful for quick comparisons, but they usually specialize in a specific hull type and are therefore not adequate for comparing dissimilar hull types. Scale model hydrodynamic testing is the traditional evaluation method, and is applicable to most hull forms. Scale model tests are usually performed on the largest model possible in order to achieve the most accurate performance predictions. However, such testing is very resource intensive, and is therefore not a cost effective method of evaluating multiple hull forms. This thesis explores the testing of small scale models. It is hypothesized that although the data acquired by these tests will not be accurate enough for performance predictions, they will be accurate enough to rank the performance of the multiple hull forms being evaluated.
|
9 |
Turbulence Modeling for Predicting Flow Separation in Rocket NozzlesAllamaprabhu, Yaravintelimath January 2014 (has links) (PDF)
Convergent-Divergent (C-D) nozzles are used in rocket engines to produce thrust as a reaction to the acceleration of hot combustion chamber gases in the opposite direction. To maximize the engine performance at high altitudes, large area ratio, bell-shaped or contoured nozzles are used. At lower altitudes, the exit pressure of these nozzles is lower than the ambient pressure. During this over-expanded condition, the nozzle-internal flow adapts to the ambient pressure through an oblique shock. But the boundary layer inside the divergent portion of the nozzle is unable to withstand the pressure rise associated with the shock, and consequently flow separation is induced.
Numerical simulation of separated flows in rocket nozzles is challenging because the existing turbulence models are unable to correctly predict shock-induced flow separation. The present thesis addresses this problem. Axisymmetric, steady-state, Reynolds-Averaged Navier-Stokes (RANS) simulations of a conical nozzle and three sub-scale contoured nozzles were carried out to numerically predict flow separation in over-expanded rocket nozzles at different nozzle pressure ratios (NPR). The conical nozzle is the JPL 45◦-15◦ and the contoured nozzles are the VAC-S1, the DLR-PAR and the VAC-S6-short. The commercial CFD code ANSYS FLUENT 13 was first validated for simulation of separated cold gas flows in the VAC-S1 nozzle. Some modeling issues in the numerical simulations of flow separation in rocket nozzles were determined. It is recognized that compressibility correction, nozzle-lip thickness and upstream-extension of the external domain are the sources of uncertainty, besides turbulence modeling.
In high-speed turbulent flows, compressibility is known to affect dissipation rate of turbulence kinetic energy. As a consequence, a reduction in the spreading rate of supersonic mixing layers occurs. Whereas, the standard turbulence models are developed and calibrated for incompressible flows and hence, do not account for this effect. ANSYS FLUENT uses the compressibility correction proposed by Wilcox [1] which modifies the turbulence dissipation terms based on turbulent Mach number. This, as shown in this thesis, may not be appropriate to the prediction of flow separation in rocket nozzles. Simulation results of the standard SST model, with and without the compressibility correction, are compared with the experimental data at NPR=22 for the DLR-PAR nozzle. Compressibility correction is found to cause under-prediction of separation location and hence its use in the prediction of flow separation is not recommended.
In the literature, computational domains for the simulation of DLR subscale nozzles have thick nozzle-lips whereas for the VAC subscale nozzles they have no nozzle-lip. Effect of nozzle-lip thickness on flow separation is studied in the DLR-PAR nozzle by varying its nozzle-lip thickness. It is found that nozzle-lip thickness significantly influences both separation location and post-separation pressure recovery by means of the recirculation bubbles formed at the nozzle-lip.
Usually, experimental values of free stream turbulence are unknown. So conventionally, to minimize solution dependence on the boundary conditions specified for the ambient flow, the computational domain external to the nozzle is extended in the upstream direction. Its effect on flow separation is studied in the DLR-PAR nozzle through simulations conducted with and without this domain extension. No considerable effect on separation location and pressure recovery is found.
The two eddy-viscosity based turbulence models, Spalart-Allmaras (SA) model and Shear Stress Transport (SST) model, are well known to predict separation location better than other eddy-viscosity models, but with moderate success. Their performances, in terms of predicting separation location and post-separation wall pressure distribution, were compared with each other and evaluated against experimental data for the conical and two contoured nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the range of NPRs and to the type of nozzle.
Depending on NPR, the SST model either under-predicts or over-predicts Free Shock Separation (FSS). Moreover, it also fails to capture Restricted Shock Separation (RSS). With compressibility correction, it under-predicts separation at all NPRs to a greater extent. Even though RSS is captured by using compressibility correction, the transition from FSS to RSS is over-predicted [2]. Early efforts by few researchers to improve predictions of nozzle flow separation by realizability corrections to turbulence models have not been successful, especially in terms of capturing both the separation types.
Therefore, causes of turbulence modeling failure in predicting nozzle flow separation correctly were further investigated. It is learnt that limiting of the shear stress inside boundary layer, due to Bradshaw’s assumption, and over-prediction of jet spreading rate are the causes of SST model’s failure in predicting nozzle flow separation correctly. Based on this physical reasoning, values of the a 1 parameter and the two diffusion coefficients σk,2 and σω,2 were empirically modified to match the predicted wall pressure distributions with experimental data of the DLR-PAR and the VAC-S6-short nozzles. The results confirm that accurate prediction of flow separation in rocket nozzles indeed depends on the correct prediction of spreading rate of the supersonic separation-jet. It is demonstrated that accurate RANS simulation of flow separation in rocket nozzles over a wide range of NPRs is feasible by modified values of the diffusion coefficients in turbulence model.
|
10 |
Computational Study of the Injection Process in Gasoline Direct Injection (GDI) EnginesMartínez García, María 02 September 2022 (has links)
[ES] La creciente preocupación por los problemas medioambientales, la disponibilidad de combustibles fósiles unido a la gran demanda de vehículos, han llevado a los gobiernos a regular las emisiones emitidas a la atmósfera. Existen propuestas de adoptar fuentes de energía renovables. Sin embargo, la sustitución de los combustibles derivados del petróleo no será fácil, rápida o rentable, y el transporte propulsado por motores de combustión interna (ICE) seguirá destacando en los próximos años. La eficiencia de la combustión y el rendimiento del motor están influenciados por el complejo proceso de inyección. La inyección directa de gasolina (GDI) aumenta el ahorro de combustible y cumple los requisitos de emisiones contaminantes, aunque queda potencial por descubrir. Por ello, ha sido objeto de estudio en los últimos años y, en consecuencia, de la presente Tesis.
Este trabajo tiene como motivación mejorar el entendimiento en el campo del GDI. La compleja naturaleza transitoria del proceso de inyección hace que el estudio experimental sea un desafío. La Mecánica de Fluidos Computacional (CFD) surge como una potente alternativa a los experimentos y ha sido adoptada para esta investigación. Bajo este contexto, el objetivo de la presente Tesis es desarrollar una metodología predictiva para la caracterización hidráulica del inyector, capaz de ser aplicada a las actuales y futuras generaciones de inyectores GDI, independientemente de las características del inyector y del software de estudio. Una vez validada, el objetivo posterior es utilizar los resultados para analizar el comportamiento del chorro. Este enfoque busca seguir los pasos de la comunidad científica sustituyendo la práctica experimental.
La validación de la metodología se lleva a cabo mediante su aplicación en dos inyectores GDI solenoides multi-orificio diferentes. Además, se han utilizado dos códigos CFD comerciales: CONVERGE y StarCCM+. La metodología predictiva se centra en el estudio del flujo interno y el campo cercano para caracterizar hidráulicamente el inyector. El problema a tratar se define como un sistema multifásico en un marco Euleriano y considerando un único fluido. El tratamiento del flujo multifásico se realiza mediante el enfoque Volume-of-Fluid (VOF). Además, se emplea el Homogeneous Relaxation Model (HRM) para considerar el intercambio de masa entre las fases líquida y vapor debido a cavitación y flash boiling. La turbulencia se ha tratado a partir de los enfoques Reynolds-Averaged Navier-Stokes (RANS) y Large Eddy Simulations (LES). Por otro lado, en cuanto al estudio del flujo externo, se ha adoptado el Discrete Droplet Model (DDM). La atomización y el chorro están influenciados por la geometría de la tobera, por lo que la estrategia de acoplamiento del flujo interno y externo complementa los análisis. Se han adoptado enfoques de acoplamiento unidireccional y mapeado, utilizando como parámetros de entrada los datos de flujo interno de la validada metodología.
Esta Tesis aporta una nueva y valiosa metodología predictiva con una elevada precisión a la hora de caracterizar el proceso de inyección en comparativa con datos experimentales. Por otro lado, es directamente trasferible a distintos códigos de cálculo así como aplicable a inyectores con características dispares sin perjudicar las exigencias del modelo. La correcta caracterización del flujo interno ha permitido emplear los datos obtenidos para analizar el comportamiento del chorro eliminando la necesidad de usar datos experimentales. Los resultados obtenidos capturan el comportamiento macroscópico del chorro con una precisión comparable a los experimentos. Aunque todavía hay muchos retos que afrontar, la presente Tesis supone un gran avance en el campo del GDI. El remarcable progreso se debe al desarrollo y uso de una metodología totalmente predictiva, que permite prescindir de la mayoría de los experimentos para contribuir a una mayor y más amplia visión de la física del proceso de inyección. / [CA] La creixent preocupació pels problemes ambientals, la limitada disponibilitat de combustibles fòssils, acompanyat a la gran demanda de vehicles, ha portat el govern a regular els nivells d'emissions emesos a l'atmosfera. Existeixen propostes d'adoptar fonts d'energia renovables. Tanmateix, la substitució dels combustibles líquids derivats del petroli no es durà a terme de forma fàcil, ràpida o rentable, i el transport propulsat per motors de combustió interna (ICE) continuarà destacant en els pròxims anys. L'eficiència de la combustió i el rendiment del motor són fortament influenciats pel complex procés d'injecció. La injecció directa de gasolina (GDI) augmenta l'estalvi de combustible i complix amb els requisits d'emissions, encara que queda molt potencial per descobrir. Per això, aquest ha sigut objecte d'investigació en els últims anys i, com a conseqüència, d'aquesta Tesi.
Aquest treball té com a motivació millorar l'enteniment en el camp del GDI. La complexa natura transitòria de la injecció fa que l'estudi experimental siga força complex. La Mecànica de Fluids Computacional (CFD) sorgeix com una potent alternativa als experiments, i ha sigut adoptada per aquesta investigació. Baix aquest mateix context, es proposa com a objectiu principal d'aquesta Tesi el desenvolupament d'una metodologia predictiva per a la caracterització hidràulica de l'injector, capaç de ser aplicada a les actuals i futures generacions d'injectors GDI (independentment de les característiques de l'injector i del software d'estudi). Una vegada validada, el posterior objectiu és analitzar el comportament de l'esprai. Aquest enfocament busca seguir els passos de la comunitat científica substituint la pràctica experimental.
La validació de la metodologia ha sigut duta a terme mitjançant la seva aplicació en dos injectors GDI solenoides multi-orifici. A més, s'han utilitzat dos software CFD comercials: CONVERGE i StarCCM+. La metodologia predictiva se centra en l'estudi del flux intern i el camp proper per tal de caracteritzar hidràulicament l'injector. El problema a tractar es defineix en base a un sistema multi-fàsic en un marc Eulerià i considerant un únic fluid. El tractament del fluid multi-fàsic es realitza mitjançant l'aproximació Volume-of-Fluid (VOF). A més, s'utilitza el Homogeneous Relaxation Model (HRM) per tal de considerar l'intercambi de massa entre les fases líquida i vapor degut als fenòmens de cavitació i flash boiling. La turbulència s'ha tractac a través dels enfocaments Reynolds-Averaged Navier-Stokes (RANS) i Large Eddy Simulations (LES). Pel que fa a l'estudi del fluix extern, s'ha adoptat el Discrete Droplet Model (DDM). Sent conscients que el comportament l'atomització i l'esprai estan influenciats per la geometria de la tovera, l'estratègia d'acoblament del flux intern i extern complementa les anàlisis. S'han adoptat els enfocaments d'acoblament unidireccional i mapejat, utilitzant com a paràmetres d'entrada les dades del flux intern obtingudes amb la validada metodologia.
Aquesta Tesi aporta una nova i valuosa metodologia predictiva amb una elevada precisió a l'hora de caracteritzar el procés d'injecció en comparativa amb dades experimentals. És directament transferible a diversos codis de càlcul així com aplicable a injectors amb característiques dispars sense perjudicar les exigències del model. La correcta caracterització del flux intern ha permès utilitzar les dades obtingudes per tal d'analitzar el comportament de l'esprai, eliminant la necessitat d'emprar dades experimentals. Els resultats obtinguts d'aquest estudi capturen el comportament macroscòpic de l'esprai amb una precisió comparable als experiments. Encara que queden molts reptes per afrontar, aquesta Tesi aporta un important avanç al camp del GDI. La ruptura prové del desenvolupament i ús d'una metodologia completament predictiva, que substitueix els experiments requerits i així contribueix a una millor i més ampla visió de la física del procés d'injecció. / [EN] Concerns about climate change, availability of fuel resources and the high demand for vehicles, have led governments to regulate the level of pollution emitted by engines into the atmosphere. There is a strong desire to adopt renewable and sustainable energy sources. However, the substitution of liquid fuels derived from petroleum will not emerge easily, quickly or economically, and Internal Combustion Engines (ICE) will continue to excel for the next few years. Combustion efficiency and engine performance are strongly influenced by the complex fuel injection process. Gasoline Direct Injection (GDI) strategies increase fuel economy and meet emission requirements, although many challenges remain, which has therefore been one of the main research objectives in recent years and of this Thesis.
The present research aims to provide a better understanding in the field of GDI. The transient and complex nature of the injection process makes the experimental study of GDI quite challenging. Therefore, Computational Fluid Dynamics (CFD) emerges as a powerful alternative adopted for this research. In this context, the main objective of the present Thesis is to develop a predictive methodology capable of being applied to current and future generations of GDI injectors, regardless of the injector features and the software employed, for the hydraulic characterization of the injector. Once validated, the subsequent goal is to employ the obtained results to analyze the behavior of the spray downstream of the injector. The approach attempts to follow the footsteps of the research community to avoid experimental practice.
The predictive methodology has been validated through its application to two multi-hole solenoid GDI injectors with different features. In addition, the mentioned methodology has been evaluated using diverse commercial software: CONVERGE and StarCCM+. The methodology focuses on the study of the internal and near-field flow to hydraulically characterize the injector. So the problem to be addressed is a multi-phase system, performed in an Eulerian framework, modeled through a single-fluid approach. The multi-phase flow is treated by means of the Volume-of-Fluid (VOF) approach. Homogeneous Relaxation Model (HRM) is employed to consider the mass exchange between liquid and vapor fuel phases, due to cavitation and flash boiling. The turbulence treatment has been performed from both Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES) approaches. Regarding the external flow study, the Discrete Droplet Model (DDM) has been adopted. In addition, being aware that atomization and spray behavior is greatly influenced by the nozzle geometry, the coupling strategy of the internal and external flow complements the analyses. One-way coupling and mapping approaches have been adopted, using as input parameters the internal flow data obtained from the already validated methodology.
Accordingly, this Thesis provides a new and valuable predictive methodology, which has demonstrated a high accuracy in characterizing the flow behavior during the injection process through comparison with experimental data. It has also proven to be directly transferable to different CFD software and applicable to injectors with dissimilar characteristics without compromising the requirements of the model. The correct internal flow characterization has made it possible to employ the obtained data to analyze the spray patterns, which eliminates the need to consider experimental data. The outcomes of this study macroscopically capture the jet behavior with an accuracy comparable to experiments under different operating conditions. Although there are still many challenges to face, the present Thesis brings a breakthrough in the field of GDI. The quantum leap arises from the development and use of a fully predictive methodology, allowing to avoid most experiments to contribute to a greater and broader vision of the injection process physics. / María Martínez García has been founded through a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118 and financial support from the European Union. These same institutions, Government of Generalitat Valenciana and the European Union, supported through a grant for pre-doctoral stays out of the Comunitat Valenciana with reference BEFPI/2020/057 the research carried out during the stay at Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, ETH Zurich, Switzerland. Special gratitude from the author to both institutions, Government of Generalitat Valenciana and the European Union, for making this dream possible / Martínez García, M. (2022). Computational Study of the Injection Process in Gasoline Direct Injection (GDI) Engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185180
|
Page generated in 0.097 seconds