• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 73
  • 26
  • 16
  • 9
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 413
  • 102
  • 98
  • 88
  • 75
  • 71
  • 66
  • 64
  • 63
  • 43
  • 38
  • 37
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Accuracy of TransferRNA Selection in Protein synthesis / Accuracy of TransferRNA Selection in Protein synthesis

Bhutia, Pema choden January 2011 (has links)
ACCURACY OF TRANSFER RNA SELECTION IN PROTEIN SY The ribosome is a rapid magnificent molecular machine that plays an important role in proteinsynthesis and it consists of RNA and protein. The 70S bacterial ribosome comprises twosubunits, 30S and 50S. The 30S small subunit of the bacterial ribosome contains a protein calledS12, encoded by the rpsL gene. The function of this S12 protein is to help arrange the mRNAcorrectly to the ribosome and to interact with transfer RNA (tRNA) to initiate translation.Mutations in the rpsL gene generate phenotypes like resistance, dependence or pseudodependenceto the antibiotic streptomycin in bacteria. It is believed that mutations in the rpsLgene can increase the accuracy of tRNA selection in protein synthesis.The ribosome conducts the selection of tRNA in two steps: the initial selection and theproofreading step. During these multiple steps, the ribosome chooses the cognate aminoacyltRNAsin a ternary complex with EF-Tu and GTP and accommodates in the A site of ribosome.Therefore, the accuracy of the ribosome in selection of cognate aminoacyl-tRNA is crucial for the production of functional polypeptide sequences. Here, three different Escherichia coli strains; wild type MG1655, streptomycin restrictive (SmR) strain res222, and a streptomycin pseudo-dependent (SmP) strain w3110 are used, for studying the accuracy of tRNA selection inprotein synthesis. The mutant SmR shows hyper-accurate phenotype, which means, it has lowerpeptide bond formation efficiency and higher accuracy than the wild type. SmP shows pseudodependentto streptomycin phenotype which means it has higher peptide bond formation efficiency in the presence of antibiotic streptomycin. I have estimated the accuracy of tRNA selection in protein synthesis with enzyme kinetics. The kinetics data of these experiments display that mutant streptomycin restrictive is hyper-accurate and lower peptide bond formation efficiency than the wild type. SmP for the near cognate reaction in presence of antibiotic streptomycin has higher peptide bond formation efficiency than the SmP in absence of antibiotic streptomycin. SmP in presence antibiotic streptomycin has lower accuracy than the SmP in absence of antibiotic streptomycin.
12

Chemical inactivation of the E. Coli ribosome identification of the proteins at the site of inactivation for polyuridylic acid binding /

Cantrell, Michael Alan. January 1977 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references (leaves 158-170).
13

Recognition Elements for Elongation Factor P on the Ribosome

Frister, Jan Ole 29 November 2018 (has links)
No description available.
14

Understanding Ribosome Assembly: New Approaches To Determining The Function of Escherichia Coli YjeQ

Stewart, Geordie January 2015 (has links)
As the gateway to translation, ribosome biogenesis is a core cellular process that is highly efficient, accurate and regulated. This is made possible in part by a suite of ancillary proteins with diverse but poorly understood functions. One such factor, the Escherichia coli GTPase YjeQ, is suspected of playing a critical role in the assembly of the 30S ribosomal subunit. Here we demonstrate that the absence of this factor in vivo leads to an accumulation of a late-stage immature 30S subunit species. While these precursors lack several ribosomal proteins and feature a number of conformational abnormalities, they are competent for maturation, suggesting that they represent an assembly intermediate. We further demonstrate that YjeQ accelerates the maturation of these precursors in vivo. In addition, we explore the role of YjeQ through genetic interaction studies and substantiate a functional connection with the putative assembly factor RbfA. A linear correlation between growth rate and ribosomal content has been observed for multiple wild-type microbes. We have examined this relationship in the ΔyjeQ strain and found there to be a significant increase in the total cellular ribosomal material in comparison to the wild-type. This phenotype is not wholly exclusive to perturbations in biogenesis. Indeed, linear correlations and elevated levels of ribosomal content are also observed for several translation mutants. The degree of elevation, however, is marginal in comparison to that seen in the biogenesis mutant. Our work explores this phenomenon and the possibility of exploiting it to identify and further characterize perturbations in the ribosome assembly process. / Thesis / Doctor of Philosophy (PhD) / In all cells, translation is carried out by ribosomes, large molecules that mediate the interpretation of the genetic code. These cellular interpreters are absolutely required for protein synthesis in bacteria and thus, are necessary for life. Like proteins, ribosomes themselves must also be synthesized, a process known as ribosome biogenesis. The ribosome consists of myriad RNA and protein components and is perhaps the single most complex machine in cells. Nevertheless, cells can build these enormous molecules in less than two minutes. This is made possible by a team of helper proteins, such as the bacterial assembly factor YjeQ. The function of this protein has evaded researchers, but there is growing evidence that it facilitates a key stage in the assembly process. Our work provides new detail into how this protein influences ribosome biogenesis, and how this in turn affects the overall health and proliferation of bacterial cells.
15

ELUCIDATING THE FUNCTION OF ASSEMBLY FACTORS IN THE MATURATION OF THE BACTERIAL LARGE RIBOSOMAL SUBUNIT

Ni, Xiaodan January 2017 (has links)
Antibiotic resistance in bacteria is becoming a major threat to public health. Many of the antibiotics used today in the clinic target the process of protein synthesis performed by the ribosome. Recent prospects for blocking ribosome function are increasingly focusing on preventing the assembly of bacterial ribosomes. A number of ribosome assembly factors are emerging as attractive targets for novel antibiotics that work in new ways. YphC and YsxC are essential GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit; however, their roles in this process are still uncharacterized. To explore their function, we biochemically and structurally characterized the 45SYphC and 44.5SYsxC precursor particles accumulated from strains depleted of YphC and YsxC, respectively. Quantitative mass spectrometry analysis and 5-6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in maturation of functional sites of the 50S subunit. We also observed that YphC and YsxC bind specifically to the two immature particles. In addition, we characterized the structure of the 50S subunits in complex with the RbgA protein. The preliminary 3D structure shows that the RbgA protein binds to the P site of the 50S subunit and displaces h69. There are also missing densities in the structure for h68 and the uL16 ribosomal protein. We expect that the atomic resolution structure of the 50S.RbgA complex will reveal the function and molecular mechanisms of this assembly factor. The deep structural understanding of protein synthesis process done by the ribosome led to the optimization of over a hundred antibiotics that are currently used in thev clinic. In the same manner, work described in this thesis provides novel insights into understanding the maturation of the large ribosomal subunit, and is paving the way to use the bacterial ribosome biogenesis pathway as a target for the development of new antimicrobials. / Thesis / Doctor of Philosophy (PhD)
16

La triméthylguanosine synthase (TGS1): implication dans la morphogenèse nucléolaire et caractérisation de son environnement physique et fonctionnel/Trimethylguanosine synthase (Tgs1):Involvment in nucleolar morphology and characterization of its physical and functional environment

Colau, Geoffroy 04 May 2007 (has links)
La TriméthylGuanosine Synthase 1 de levure (Tgs1) à été identifiée à la suite d’un criblage double hybride en utilisant l’extrémité basique carboxy-terminale de la protéine SmB, cœur des snRNP, comme appât. Il a été également montré que Tgs1 interagit spécifiquement avec le domaine carboxyl-terminal basique KKD/E des protéines Nop58p et Cbf5p, deux composants protéiques du coeur des snoRNP. Le gène TGS1 n’est pas essentiel mais sa délétion confère un phénotype de cryo-sensibilité associé à un léger défaut d’épissage à basse température, associé à la rétention de U1 dans le nucléole. La recherche de substrats pour cette protéine a montré que Tgs1p est capable de méthyler la coiffe monométhylée des snARN et des snoARN transcrits par l’ARN polymérase II. La grande majorité des snoARN joue un rôle dans la sélection des sites de modifications de plusieurs classes d’ARN. Certains, par contre, sont impliqués dans la voie de synthèse des ribosomes, un processus comprenant de multiples étapes de clivages endo- et exoribonucléotidiques et ayant lieu dans le nucléole où les facteurs impliqués dans ces réactions se concentrent en plusieurs domaines distincts. Le point de départ de ce travail de thèse a été de tester un possible rôle de Tgs1p et/ou de la triméthylation dans la biosynthèse du ribosome. Dans un premier temps, l’analyse du processing des ARN ribosomiques dans la souche délétée pour TGS1 nous a permis de mettre en évidence l’implication de Tgs1 dans la formation de l’ARNr de la petite sous-unité, l’ARNr 18S. Des mutants catalytiques de Tgs1, incapables de reconnaître et de modifier les coiffes m7G, ont été crées. L’analyse de la voie de biogenèse des ribosomes dans ces souches ne présente pas les défauts constatés dans la souche délétée, révélant que c’est la protéine et non sa fonction catalytique qui est requise. De plus, ces mutants sont autant défectueux dans l’épissage des ARN messagers, excluant toute implication du défaut d’épissage dans le ralentissement de la voie de biogenèse des ribosomes observé dans la souche délétée. L’ultrastructure des souches délétées pour TGS1 observée en microscopie électronique nous a permis de mettre en évidence un effet de l’absence de Tgs1 sur la morphologie nucléolaire. En effet, le nucléole dans ces souches ne présente plus de nucléole structuré, bi-compartimenté. Les analyses en microscopie à fluorescence ont confirmé la disparition de la ségrégation des deux compartiments nucléolaires, suggérant que le défaut dans la biogenèse des ribosomes puisse être une conséquence de la perte de cohérence du nucléole. La caractérisation de l’environnement physique et fonctionnel de Tgs1 a été entreprise afin de mettre à jour des fonctions additionnelles de la protéine. Diverses approches ont été envisagées: la recherche de partenaires physiques par l’emploi d’un allèle de TGS1 étiquetté TAP permettant la purification puis l’analyse de partenaires physiques ainsi que la recherche de partenaires fonctionnels par la méthode du crible synthétique létal. La recherche de partenaires physiques a permis de révéler l’existence d’un grand nombre d’ARN non codants coprécipités avec Tgs1. Certains sont des substrats connus de la protéine mais un grand nombre d’ARN ne possédant pas de coiffes monométhylées. La recherche de partenaires fonctionnels a permis la découverte de candidats synthétiques létaux appartenant à deux groupes, un groupe lié à l’épissage des ARN messagers et un autre groupe constitué de membres du complexe SWR1, complexe impliqué dans la régulation transcriptionnelle par modification de la chromatine. Lors de ce crible de candidats synthétiques létaux, il est apparu que la délétion de TGS1 restaure partiellement le défaut de croissance à chaud induit par la délétion du gène RRP47, dont le produit est impliqué dans la maturation de l’extrémité 3’ de plusieurs types d’ARN non codants. Les travaux préliminaires effectués ne permettent pas encore d’expliquer un tel phénotype. Au cours de ce travail de thèse, nous avons pu répondre à un certain nombre de questions sur la fonction et le rôle de Tgs1 dans la cellule. La fonction catalytique de Tgs1 dans la méthylation des coiffes m7G est clairement nécessaire à l’efficacité de l’épissage des ARN messagers mais le rôle de la triméthylation de la coiffe des snoARN n’est pas élucidé à ce jour. Le fait que la fonction catalytique de Tgs1 n’est pas impliquée dans le défaut dans la biogenèse des ribosomes et la découverte du rôle de la protéine dans la morphologie nucléolaire, laisse entrevoir l’existence de fonctions additionnelles de Tgs1 dans la cellule. La caractérisation de son environnement physique et fonctionnel abonde justement dans ce sens, mettant à jour plusieurs interactions probablement liées à sa fonction catalytique, notamment dans l’épissage des ARN messagers mais également un grand nombre d’interactions impliquant la participation de Tgs1 dans d’autres voies métaboliques.
17

Stress and translation : implication of 16S rRNA methylations in Escherichia coli and characterization of a toxin-antitoxin system of Sinorhizobium meliloti / Stress et traduction : implication des méthylations de l’ARNr 16S chez Escherichia coli et caractérisation d’un système toxine-antitoxine de Sinorhizobium meliloti

Thomet, Manon 30 November 2018 (has links)
Les bactéries sont capables de vivre dans une grande variété d'environnements différents et sont confrontées à des conditions en constante évolution. Par conséquent, elles doivent rapidement adapter leur métabolisme en utilisant différentes régulations aux niveaux transcriptionnel et traductionnel. Ces régulations sont largement étudiées et bien caractérisées. Cependant, les implications du ribosome sur la modulation de la traduction au cours de la réponse aux stress commencent à être explorées. Dans ce contexte de régulation ribosomique, l'hétérogénéité de la machinerie pourrait jouer un rôle important. En effet, le ribosome n'est pas une particule invariable et ses composants (ARNr, protéines ribosomiques) et leurs modifications peuvent varier. Les modifications des ARNr sont situées dans les sites fonctionnels du ribosome et sont particulièrement conservées, ce qui sous-entend leur potentielle importance. Cependant, leur rôle physiologique n'est pas toujours bien défini. Nous nous sommes intéressés aux méthylations de l'ARNr 16S et avons étudié leur rôle dans la traduction, dans des conditions favorables et stressantes. Nous avons démontré que l'absence de certaines méthylations augmente la traduction dans des conditions stressantes et non stressantes. Ainsi, les ribosomes modifiés peuvent jouer un rôle bénéfique lors de la réponse au stress. Une autre façon d'agir sur la traduction dans des conditions stressantes consiste à cibler les ARNm. C'est notamment le cas des toxines endoribonucléases qui sont spécifiquement produites lors de conditions stressantes. Ainsi, nous avons caractérisé le système toxine-antitoxine HicAB de Sinorhizobium meliloti. Nous prévoyons d’utiliser la toxine HicA afin d’étudier la réponse à son activité endoribonucléase chez les mutants ne possédant pas certaines modifications ribosomiques. / Bacteria are able to live in a large variety of environments and they face constantly changing conditions. Therefore they have to adapt quickly to their metabolism using different regulations at the transcriptional and translational levels. Those types of regulation are extensively studied and well characterized. However, the implications of the ribosome in modulation of translation during stress response remains poorly understood. In this context of ribosomal regulation, the heterogeneity of the machinery could play a relevant role. Indeed, the ribosome is not an invariable particle and its components (rRNAs, r-proteins) and their modifications may vary. Modifications of ribosomal RNAs are clustered in the functional sites of the ribosome and are particularly conserved, underlying their potential importance. However their physiological role is still unclear. We focused on methylations of the 16S rRNA and investigated their role in translation under favourable and stressful conditions. We successfully demonstrated that lack of some methylations increases translation under stressful and non stressful conditions. So, lack of methylation may give an advantage to ribosomes during stress response. Another way to act on translation under stressful conditions resides in targeting mRNAs. This is particularly the case for endoribonuclease toxins that are specifically produced during detrimental conditions. Thus, we characterized S. meliloti toxin-antitoxin system HicAB. We plan to use it in order to study the response to HicA toxin of mutants lacking some ribosomal modifications.
18

Erythromycin-dependence and ribosome synthesis in E. coli

Maguire, Bruce Andrew January 1995 (has links)
No description available.
19

Monitoring the late events of translation initiation in real-time

Goyal, Akanksha 30 November 2015 (has links)
No description available.
20

Fitness Effects of the Overexpression of E. coli Ribosomal Regulatory Proteins

Perryman, Matthew January 2017 (has links)
Thesis advisor: Michelle Meyer / Prokaryotic ribosomes are key to cell viability and an important area of study in model bacterial organisms. Some ribosomal proteins negatively regulate their own synthesis and that of the polycistronic operons they occur within. If levels of an autoregulatory ribosomal protein are higher than necessary for normal ribosome assembly, it binds to the 5’-untranslated region of its own mRNA transcript, preventing further translation of itself and any other proteins on its operon. We and others have shown bacteria growth defects when overexpressing ribosomal proteins (e.g. L20 and S6:S18); therefore, we hypothesized that an overabundance of autoregulatory proteins would negatively affect cell fitness due to decreased expression of the operon gene products, many of which are essential components of the ribosome. The regulation of ribosomal proteins is best described in E. coli, so we decided to use it as a model organism to investigate how overexpression of specific ribosomal proteins would affect cell growth. We examined the effects of overexpressing ribosomal proteins S15, S20, S2, S6:S18, S8, L20, L10, S1, L25, L7 and L1 on cell growth. We find the most severe growth defect in response to L20 overexpression. We performed rescue experiments for L20, L10, and S6:S18 by synthetically overexpressing the entire operon rather than just the regulatory protein. We find that this rescues the fitness of S6:S18 overexpression slightly, and L20 and L10 overexpression to a high degree. We also examined whether homologs of L20, L10, and S7 from B. subtilis and T. thermophilus induce the same changes in growth to deduce the regulatory interrelationships between different bacterial phyla. Bacillus L20 and L10 overexpression both showed drastic fitness defects. As our arsenal of effective antibiotics dwindles, our results suggest that targeting the ribosomal protein operons may be an effective area for pharmaceutical development. / Thesis (BS) — Boston College, 2017. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Arts and Sciences Honors Program. / Discipline: Biology.

Page generated in 0.1496 seconds