• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 73
  • 26
  • 16
  • 9
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 413
  • 102
  • 98
  • 88
  • 75
  • 71
  • 66
  • 64
  • 63
  • 43
  • 38
  • 37
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Biochemical Studies Of Abce1

Sims, Lynn 01 January 2012 (has links)
The growth and survival of all cells require functional ribosomes that are capable of protein synthesis. The disruption of the steps required for the function of ribosomes represents a potential future target for pharmacological anti-cancer therapy. ABCE1 is an essential Fe-S protein involved in ribosomal function and is vital for protein synthesis and cell survival. Thus, ABCE1 is potentially a great therapeutic target for cancer treatment. Previously, cell biological, genetic, and structural studies uncovered the general importance of ABCE1, although the exact function of the Fe-S clusters was previously unclear, only a simple structural role was suggested. Additionally, due to the essential nature of ABCE1, its function in ribosome biogenesis, ribosome recycling, and the presence of Fe-S within ABCE1, the protein has been hypothesized to be a target for oxidative degradation by ROS and critically impact cellular function. In an effort to better understand the function of ABCE1 and its associated Fe-S cofactors, the goal of this research was to achieve a better biochemical understanding of the Fe-S clusters of ABCE1. The kinetics of the ATPase activity for the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg2+. Typically, ATPases require Mg2+, as is true for PabABCE1, but Mg2+ also acts as a unusual negative allosteric effector that modulates ATP affinity of PabABCE1. Comparative kinetic analysis of Mg2+ inhibition shows differences in the degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent Km for ATP of apo- iv PabABCE1 increases >30 fold from ~30 µM to over 1 mM when in the presence of physiologically relevant concentrations of Mg2+. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge () to being dependent on  with cellular [Mg2+]. The effect of ROS on the Fe-S clusters within ABCE1 from Saccharomyces cerevisiae was studied by in vivo 55Fe labeling. A dose and time dependent depletion of ABCE1 bound 55Fe after exposure to H2O2 was discovered, suggesting the progressive degradation of Fe-S clusters under oxidative stress conditions. Furthermore, our experiments show growth recovery, upon removal of the H2O2, reaching a growth rate close to that of untreated cells after ~8 hrs. Additionally, a corresponding increase (~88% recovery) in the ABCE1 bound 55Fe (Fe-S) was demonstrated. Observations presented in this work demonstrate that the majority of growth inhibition, induced by oxidative stress, can be explained by a comparable decrease in ABCE1 bound 55Fe and likely loss of ABCE1 activity that is necessary for normal ribosomal activity. The regulatory roles of the Fe-S clusters with ABCE1 provide the cell a way to modulate the activity of ABCE1 and effectively regulate translation based on both cellular energy charge and the redox state of the cell. Intricate overlapping effects by both [Mg2+] and the status of Fe-S clusters regulate ABCE1’s ATPase activity and suggest a regulatory mechanism, where under oxidative stress conditions, the translational activity of ABCE1 can be inhibited by oxidative degradation of the Fe-S clusters. These findings uncover the regulatory function of the Fe-S clusters with v ABCE1, providing important clues needed for the development of pharmacological agents toward ABCE1 targeted anti-cancer therapy.
32

Characterization of Ribosomes and Ribosome Assembly Complexes by Mass Spectrometry

Dator, Romel P. January 2013 (has links)
No description available.
33

Structural insights into noncanonical mechanisms of translation

James, Nathan Rhys January 2017 (has links)
Translation is the process by which proteins are synthesized from the instructions in the genetic code. Translation is mediated by the ribosome, a large ribonucleoprotein complex, in concert with messenger RNA (mRNA), transfer RNA (tRNA), and a variety of proteins. The canonical mechanism of translation, introduced in Part I of my thesis, is divided into four distinct phases: initiation, elongation, termination, and recycling. Under unusual circumstances, each phase of translation can also proceed via a number of noncanonical mechanisms, many of which are vitally important for cellular growth or viral infectivity. My thesis describes structural insights into two such noncanonical mechanisms. The aim of the first project, described in Part II, was to structurally characterize a noncanonical mechanism of translational termination in bacteria. In the absence of a stop codon, ribosomes arrest at the 3′ end of an mRNA and are unable to terminate. In bacteria, the primary mechanism for rescuing such nonstop complexes is known as trans-translation. In the absence of a functional trans-translation system, however, the small protein ArfA recognizes the empty mRNA channel and recruits the release factor RF2 to the ribosome, enabling termination to occur. Using single-particle electron cryomicroscopy (cryo-EM), I obtained four high-resolution structures of nonstop complexes that reveal the mechanism of ArfA-mediated ribosome rescue and have wider implications for understanding canonical termination in bacteria. The aim of the second project, described in Part III, was to gain structural insights into a noncanonical mechanism of translational initiation in eukaryotes known as internal ribosome entry. Instead of a 5′ cap, many viruses contain intricately structured, cis-acting internal-ribosome-entry sites (IRESs) within their genomes that direct end-independent initiation. The IRES of hepatitis-C virus (HCV), for example, interacts directly with the mammalian ribosome and functionally replaces many of the canonical initiation factors. However, the mechanism by which the HCV IRES coordinates assembly of an initiation complex and progresses through the initiation phase remains poorly understood. I developed a method for purifying native ribosomal complexes from cell lysate that enabled me to obtain multiple cryo-EM maps of the HCV IRES in complex with the 80S ribosome, including a previously unseen conformation of the IRES induced by rotation of the ribosomal small subunit, and to make progress towards capturing earlier steps in the initiation pathway.
34

Rôle des ribosomes et de leur biogenèse dans la tumorigenèse et la réponse aux traitements chimiothérapeutiques / Role of ribosomes and ribosome biogenesis in tumor development and response to chemotherapeutic treatments

Therizols, Gabriel 26 May 2014 (has links)
Les cellules cancéreuses produisent une grande quantité de ribosomes afin de synthétiser les protéines nécessaires à leur prolifération rapide. Les mécanismes qui conduisent à cette augmentation de la production de ribosome ne sont que partiellement compris, mais ils semblent intimement liés à l'acquisition du phénotype tumoral. De plus, une nouvelle théorie propose que les ribosomes ne sont pas des effecteurs neutres de la traduction, mais qu'ils jouent un rôle direct dans la régulation de l'expression génique. Cette théorie se base sur l'observation que la composition des ribosomes est hétérogène en fonction des types cellulaires et des conditions environnementales. Dans ce contexte, j'ai étudié les liens entre les altérations des signaux qui contrôlent la biogenèse des ribosomes, tant au niveau quantitatif que qualitatif, et le développement du phénotype tumoral. Ce manuscrit rapporte trois études effectuées au cours de mon travail de thèse. Ces études ont permis d'identifier : i) un nouveau régulateur de la quantité de ribosomes, la LN-Nétrine-1 et ii) des modifications de la composition et de la fonction des ribosomes induites par des altérations génétiques (perte d'activité de p53) et par l'utilisation d'une molécule chimiothérapeutique, le 5- Fluorouracile. Ces perturbations de la quantité et de la fonction des ribosomes modifient le contrôle de la traduction des cellules et la croissance, la prolifération et la survie cellulaire. Il ressort de ces résultats que les ribosomes sont des éléments qui participent au contrôle de l'expression génique et qui jouent un rôle dans la pathologie cancéreuse et la réponse au traitement chimiothérapeutique / Cancer cells produce large amounts of ribosomes to synthesize the proteins required for their rapid proliferation. The mechanisms leading to this increase in ribosome production are only partly understood, but they are related to the acquisition of the tumor phenotype. In addition, a new theory proposes that ribosomes are not neutral effectors of translation, but have a direct role in the regulation of gene expression. This theory is based on the observation that ribosome composition is heterogeneous in different cell types and according to environmental conditions. In this context, I have analyzed the relationships between changes in signals that control ribosome biogenesis, both quantitatively and qualitatively, and the development of the tumor phenotype. This manuscript reports three studies made during this PhD program. These studies identified: i) a novel regulator of the amount of ribosomes, the LN-Netrin-1 and ii) changes in the ribosome composition and function induced by genetic alterations (loss of activity of p53) and by the use of a chemotherapeutic molecule, the 5-Fluorouracil. These perturbations of the amount and the function of ribosomes modify the translation control and cell growth, cell proliferation and cell survival. From these results it can be conclude that ribosomes are elements involved in the regulation of gene expression and play a role in cancer pathology and response to chemotherapy
35

In Vitro Kinetics of Ribosomal Incorporation of Unnatural Amino Acids

Wang, Jinfan January 2016 (has links)
Ribosomal incorporation of unnatural amino acids (AAs) into peptides or proteins has found broad applications in studying translation mechanism, discovering potential therapeutics, and probing protein structure and function. However, such applications are generally limited by the low incorporation efficiencies of the unnatural AAs. With in vitro kinetics studies using a purified E. coli translation system, we found that the natural N-alkyl AA carrier, tRNAPro, could hasten the incorporation of N-methyl AAs. Also, the incorporation rate increased remarkably with increasing pH in the range of 7 to 8.5, suggesting the rate was limited by peptidyl transfer, not accommodation. Competition experiments revealed that several futile cycles of delivery and rejection of the A site N-methyl AA-tRNA were required per peptide bond formation, and the incorporation yield could be increased by using a higher Mg2+ concentration. Kinetics of ribosomal polymerization, using AA-tRNA substrates prepared from the standard N-NVOC-AA-pdCpA chemoenzymatic ligation method, clarified that the inefficiency of incorporation was due to the penultimate dC. This dC prompted faster peptidyl-tRNA drop-off, leading to loss of processivities along consecutive incorporations. Circumventing the penultimate dC by using our N-NVOC-AA-pCpA chemoenzymatic ligation or the flexizyme charging method to prepare the AA-tRNA substrates was able to improve the efficiencies of ribosomal consecutive incorporations of unnatural AAs. By studying the translation steps after aminoacylation of tRNAPyl, the favored carrier for unnatural AAs in vivo, we demonstrated surprisingly slow biphasic kinetics of tRNAPyl-mediated amber suppression in vitro. The fast phase amplitude increased with increasing EF-Tu concentration, allowing measurement of Kd of EF-Tu binding. Results revealed ~25-fold weaker EF-Tu binding affinity of the tRNAPyl body than that of E. coli tRNAPhe. The fast phase rate was ~30-fold slower than that of native substrates, and this rate was limited by the ~10-fold less efficient AA-tRNAPyl:EF-Tu:GTP ternary complex binding to the ribosome. The incorporation was so slow that termination by RF2 mis-reading of the amber codon became a significant competing reaction. The processivity was unexpectedly impaired as ~40% of the dipeptidyl-tRNAPyl could not be elongated to tripeptide. This new overall understanding opens a window of improving unnatural AA incorporation both in vitro and in vivo.
36

Segregation of Protein Synthesis Between the Cytoplasm and Endoplasmic Reticulum of Eukaryotic Cells

Reid, David William January 2014 (has links)
<p>The partitioning of translation to the outer membrane of the endoplasmic reticulum is a problem that has been the subject of inquiry since the discovery of the ribosome. The large degree to which ribosomes were found to be tethered to the membrane led to intense investigation of a series of related questions regarding the identity of those mRNAs that are translated on the endoplasmic reticulum, and the functions of that localization in cell stress. In this dissertation, I approach each of these questions in turn and work to reconcile my observations with those models that have been previously proposed. A theme of this work is the application of modern methods, particularly deep sequencing technology, to address problems that had largely been considered solved. The most prominently featured method is ribosome profiling, which is paired with classical biochemical and cell biological techniques. I arrive at several conclusions: 1) a significant fraction of all mRNAs is well represented on the endoplasmic reticulum membrane, 2) the properties of translation diverge substantially between membrane-associated and free ribosomes, and 3) the compartmentalization of translation can serve as an important variable in cell stress.</p> / Dissertation
37

STM1 IS A NOVEL REGULATOR OF MESSENGER RNA TRANSLATION AND DEGRADATION IN SACCHAROMYCES CEREVISIAE

Balagopal, Vidya January 2010 (has links)
In eukaryotes, regulation of translation and decay of messenger RNA are critical for fine-tuned control of gene expression. An important point of control is the key transition where mRNAs exit translation and assemble into a non-translating mRNP state that can accumulate in cytoplasmic granules such as P bodies and/or Stress granules. In the budding yeast Saccharomyces cerevisiae , the activators of decapping Dhh1 and Pat1 appear to promote the exit of mRNAs from translation. In my work, summarized below, I describe a new regulator of translation repression and mRNA degradation, Stm1, and its novel mode of action. First, I identified Stm1 as a novel regulator of translation repression and mRNA decay. Stm1 shows several genetic interactions with Pat1 and Dhh1, in a manner consistent with Stm1 promoting the function of Dhh1. This suggests that Stm1 has a role to play in translation repression and/or activation of mRNA decay. stm1 δ strains are defective in the degradation of a subset of mRNAs that include EDC1 and COX17 . These results strongly argue that Stm1 is a novel addition to the mRNA degradation machinery. Second, I have shown that Stm1, a known ribosome-associated protein, can bind and stall 80S ribosomes to repress translation and promote decay. Stm1 is able to repress translation and stall an 80S complex in vitro . Several mutations were identified in the protein, which link the in vitrophenotype to its biological functionin vivo. The analysis of different steps in translation reveals Stm1 functions in a novel manner to inhibit translation after the formation of an 80S complex. Since most of the regulation of translation is thought to happen at the stage of initiation, this study reveals a novel mode of translation regulation. These results also provide a direct and mechanistic link between ribosome function, inhibition of translation and the degradation of messenger RNAs.
38

The characterisation and conjugation of the fungal toxin #alpha#-sarcin

Sylvester, Ian David January 1995 (has links)
No description available.
39

Characterisation of the eukaryotic ribosome biogenesis factors, Nob1, Dim2, and Tsr1, and their interactions with RNA

McCaughan, Urszula Maria January 2015 (has links)
Ribosome biosynthesis in eukaryotes is a complex process involving over 200 accessory factors. Nob1, Dim2, and Tsr1 are three conserved factors that are all involved in the late processing steps of the small subunit (40S) pre-rRNA. Depletion of any of these factors leads to the accumulation of the immature 20S pre-rRNA. Nob1, an essential protein in yeast, performs the final cleavage of small subunit rRNA giving rise to the mature particle. It is aided in this process by other proteins such as Dim2. Previously, the two proteins have been shown to interact. Nob1 function was found to be more efficient in the presence of Dim2. Previous studies also indicated that Nob1 binds a site on the pre-40S that is distal to the cleavage site while Dim2 binds proximally. Using analytical gel filtration, electrophoretic mobility shift assays, and isothermal titration calorimetry we show that Nob1 does not interact with the distal binding site in vitro. Instead, a stable complex with a micromolar disassociation constant can be formed with a sequence derived from the cleavage site. Thus, Nob1 and Dim2 appear to be competing for this site. The interaction with both proteins is blocked when this sequence is sequestered in a hairpin structure, which has been previously predicted to form at this site. By altering individual bases in the RNA sequence, we have identified the sequence determinants for Nob1-rRNA recognition. Tsr1 function is unknown to date. It shares sequence similarity with certain GTPases; however, no GTP binding has been identified in previous studies. The depletion of this factor leads to a similar phenotype as the depletion of Nob1 and Dim2. By screening various deletion constructs, we have obtained good quality, diffracting crystals of yeast Tsr1. However, due to time constraints, the full structure has not been solved. Here we present the initial analysis of the crystallographic data and the potential for solving the structure in the future. Overall, the data presented in this thesis bring insight into the final step of small subunit ribosome maturation.
40

Étude structurale et fonctionnelle du complexe Rpf2/Rrs1 impliqué dans la biogenèse du ribosome / Structural and functional study of the Rpf2/Rrs1 complex in ribosome biogenesis

Madru, Clément 12 October 2017 (has links)
La biogenèse des ribosomes est un processus complexe qui implique la production et l'assemblage de 4 ARN et d'environ 80 protéines. Chez l'Homme, la production des deux sous-unités ribosomiques débute dans le nucléole par la synthèse par l'ARN polymérase I d'un long transcrit contenant les séquences des ARN ribosomiques 5.8S, 18S et 25S, qui s'associe de manière co-transcriptionnelle à des protéines ribosomiques et à des facteurs d'assemblage. Le quatrième ARN ribosomique, l'ARNr 5S est transcrit séparément par l'ARN polymérase III, et s'associe avec les protéines ribosomiques Rpl5 et Rpl11 en dehors du ribosome. Ce sous-complexe, appelé particule 5S, est ensuite intégré au sein de la grande sous-unité. La particule 5S est également impliquée dans le contrôle de la prolifération cellulaire. En effet, en cas de dé-régulation de la biogenèse du ribosome, la particule 5S s'accumule dans le nucléoplasme et interagit directement avec l'ubiquitine-ligase MDM2, provoquant la stabilisation du suppresseur de tumeur p53. L'objectif principal de ma thèse est d'étudier le rôle des facteurs d'assemblage Rpf2 et Rrs1 dans la biogenèse du ribosome. Ces protéines assurent deux fonctions distinctes : elles sont requises pour l'association de la particule 5S avec la sous-unité pré-60S, et stimulent la transcription des ARNr par l'ARN polymérase I. Elles sont donc impliquées dans deux événements fondamentaux qui conditionnent les capacités de prolifération cellulaire. La combinaison d'études structurales par cristallographie aux rayons X, et d'études d'interactions protéine-ARN in vitro et in vivo, m'ont permis de mieux appréhender le rôle du complexe Rpf2/Rrs1 dans l'intégration de la particule 5S et dans la maturation de la grande sous-unité. J'ai également étudié le rôle du complexe Rpf2/Rrs1 dans la régulation de la transcription des ARNr, en caractérisant ses interactions avec la polymérase I. / Ribosome Biogenesis is a complex process that requires the production and the correct assembly of the 4 rRNA with more than 80 proteins. Ribosome biogenesis starts by the transcription of a pre-RNA precursor in the nucleolus. Three of the four ribosomal RNAs, the 5.8S, 18S, and 25S rRNAs, are cotranscribed as a single 35S precursor by polymerase I. This precursor is cotranscriptionally modified, folded, cleaved, and assembled with both ribosomal proteins and non-ribosomal factors to generate the mature ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S particle, containing ribosomal proteins Rpl5 and Rpl11, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53 The main objective of my thesis was to understand the precise roles of the two assembly factors Rpf2 and Rrs1 in ribosome biogenesis. These proteins have two distinctive functions : Rpf2 and Rrs1 are required for the 5S particle incorporation into the large subunit, and stimulate the rRNA transciption by polymerase I. Using a combination of structural studies by X-Ray crystallography and biochemical approaches as in vitro and in vivo methods to study proteins-RNA interactions, I was able to uncover the function of the Rpf2/Rrs1 dimer in the maturation of the large subunit through the recruitment of the 5S particle. I also studied the function of Rpf2 and Rrs1 in the rRNA transcription regulation, by characterizing physical connection with polymerase I subunits.

Page generated in 0.0372 seconds