• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 73
  • 26
  • 16
  • 9
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 413
  • 102
  • 98
  • 88
  • 75
  • 71
  • 66
  • 64
  • 63
  • 43
  • 38
  • 37
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Découverte d'une nouvelle famille de protéine kinases bactériennes : mécanismes de fonctionnement et rôle cellulaire de YdiB, un archétype chez Baccillus subtilis / Discovery of a new bacterial protein kinase family : functioning mechanism and cellular role of YdiB, an archetype from Bacillus subtilis

Nguyen, Hien-Anh 23 May 2012 (has links)
Les données de séquençage des génomes ont révélé une nouvelle famille de protéines UPF0079, comprenant des protéines de fonction inconnue qui sont exclusivement et largement présentes chez les bactéries et qui possèdent un motif A de Walker dans leur séquence. La caractérisation biochimique et l'élucidation du rôle physiologique de cette famille contribueront à élargir nos connaissances en biologie fondamentale, et sont également un préalable vers le développement de nouveaux composés antimicrobiens. Notre étude sur YdiB, un archétype de cette famille chez Bacillus subtilis a révélé à la fois l‟autophosphorylation de YdiB et son activité de protéine kinase. L‟activité kinase de double spécificité Ser/ Thr et Tyr de YdiB semble nécessiter son oligomérisation et semble être stimulée par des molécules basiques telles que des polyamines naturelles ou la poly-L-lysine. Les 10 résidus les plus conservés chez cette famille ont été étudiés afin de mieux comprendre le mécanisme moléculaire de YdiB. Concernant la caractérisation fonctionnelle de la phosphorylation liée à YdiB, l‟étude de l‟opéron ydiA-B-C-D-E de B. subtilis nous a permis de montrer que YdiB et YdiC fonctionnent comme un couple de protéine kinase/phosphatase de deux protéines substrats dont les fonctions seraient liées aux ribosomes, YdiD et YdiE. Une co-localisation partielle entre YdiB et les ribosomes a été observée. En outre, YdiB est capable de phosphoryler des protéines ribosomiques appartennant aux deux sous-unités 50S et 30S, ainsi que deux GTPases impliquées dans la biogénèse des ribosomes, EngA et EngB. Nous avons également démontré que EngA phosphorylée par YdiB est un substrat in vitro de la phosphatase YdiC. Enfin, basé sur le phosphoprotéome de Bacillus subtilis, des peptides mimant des sites de phosphorylation in vivo ont été utilisés. Certains entre eux sont phosphorylés in vitro par YdiB. Deux de ces peptides appartiennent à la superoxyde dismutase, SodA, dont l'activité in vitro et après purification est régulée positivement via la phosphorylation par YdiB. Nous avons ensuite constaté que les cellules de B. subtilis dépourvues du gène ydiB sont plus sensibles aux agents oxidants tels que le paraquat ou la norfloxacine. Nous proposons que, in vivo, YdiB fonctionne comme une protéine kinase impliquée dans l‟activité et/ou la stabilité des ribosomes dans des conditions physiologiques normales, et YdiB contribuerait à protéger les cellules contre les dommages du stress oxydatif. / Genome sequencing data has revealed genes encoding uncharacterized protein family UPF0079 which are exclusively found in bacteria; broadly distributed in this kingdom and possess an ATP-binding motif in their sequences. Biochemical characterization and physiological role elucidation of UPF0079 will undoubtedly increase our fundamental biology knowledge, and also remain a prerequisite towards the development of new antimicrobial compounds. Our investigation on YdiB, an archetype of this family in Bacillus subtilis revealed both autophosphorylating and protein phosphotransferase activities. The dual-specificity Ser/Thr and Tyr kinase activity of YdiB seems to require oligomerization is upregulated by basic molecule activators such as natural polyamines or poly-L-lysine. The 10 most conserved residues were studied to gain insights into molecular mechanism of the kinase YdiB. To characterize the function of phosphorylation events linked to YdiB, starting with the B. subtilis ydiA-B-C-D-E operon we showed that YdiB and YdiC function as cognate protein kinase/phosphatase towards two ribosome-related protein substrates YdiD and YdiE. Some co-localization between YdiB and ribosomes were observed. Furthermore, YdiB is capable of phosphorylating both ribosomal 50S and 30S subunits as well as two ribosome-binding GTPases EngA and EngB. We also demonstrated that phosphorylated EngA by YdiB is an in vitro substrate of the phosphatase YdiC. Finally, based on the phosphoproteome pf Bacillus subtilis, peptides mimicking the in vivo phosphorylation sites were used. Some of them were found to be phosphorylated in vitro by YdiB, including two peptides which belongs to the superoxide dismutase SodA. The activity of purified SodA was then shown to be upregulated via phosphorylation by YdiB. We furthermore found that B. subtilis cells lacking ydiB become more sensitive to oxidative stress-causing agents such as paraquat or norfloxacin. We propose that in vivo, YdiB functions as a protein kinase involved in ribosome function in normal condition; and in protecting cells from oxidative stress damage.
62

Architecture de l'Holotranslocon SecYEG-DF-YajC-YidC / Architecture of the SecYEG-DF-YajC-YidC Holotranslocon

Botte, Mathieu 13 December 2013 (has links)
L’adressage des protéines vers leur correct emplacement est crucial pour la cellule. L’information d’adressage est fournie sous la forme d’une séquence signale par le polypeptide lui-même. Chez Escherichia coli, les protéines membranaires sont adressées vers la membrane de façon co-traductionnelle via la particule de reconnaissance du signal (SRP) tandis que les protéines sécrétées suivent la voie de translocation post-traductionnelle caractérisée par les protéines SecB et SecA qui sont impliquées dans le processus d’adressage. Ces deux voies convergent au niveau du canal de translocation des protéines SecYEG. Chose intéressante, SecYEG a la possibilité de recruter les domaines accessoires SecDF-YajC et YidC et ainsi former le complexe holotranslocon (HTL). La recherche actuelle sur la translocation des protéines se concentre principalement sur la structure et fonction du canal de translocation des protéines hétérotrimérique bactérien SecYEG qui est conservé. Peu de choses sont connues concernant la structure et la fonction des composants additionnels SecD, SecF et YidC formant la machinerie de translocation et qui sont essentiels pour E. coli. Ceci est dû principalement à l’absence d’un complexe holotranslocon SecYEG-DF-YidC (HTL) recombinant purifié. En conséquence, une analyse biophysique et structurale minutieuse de ce large complexe transmembranaire composé de sept sous-unités est toujours en suspens.En utilisant un nouveau système d’expression pour des complexes multi-protéiques basé sur la recombinaison de vecteur chez E. coli, nous avons avec succès surproduit l’holotranslocon SecYEG-DF-YajC-YidC et son sous-complexe composé de SecDF-YajC-YidC (DFYY). Nous avons également réussi à solubiliser avec l’aide de détergents et à purifier ces complexes. L’holotranslocon purifié a ensuite été utilisé afin de caractériser de façon biochimique le complexe et de déterminer la structure de l’holotranslocon. Premièrement, le complexe HTL semble être plus compétent pour l’insertion co-traductionnelle des protéines membranaires comparé à SecYEG isolé. Concernant la translocation post-traductionnelle d’une protéine de la membrane externe à tonneau β, dépendante de la présence de SecA et d’ATP, l’influence de la force proton motrice sur ce processus est augmentée. De plus, la présence du domaine accessoire semble améliorer l’attachement du ribosome au translocon. En utilisant des cellules déplétées de SecDF et YajC, nous avons identifié des substrats possibles de HTL qui doivent maintenant être confirmés et analysés manière plus approfondie par des expériences de translocation in vitro.Par la suite, nous avons résolu la structure de l’holotranslocon par cryo-microscopie électronique (ME) et analyse des particules isolées. En comparant les reconstructions de ME8du complexe HTL avec le sous-complexe de domaine accessoire SecDF-YajC-YidC, nous avons été capable de localisé le complexe principal SecYEG. La structure de HTL par cryo-ME a pu être affinée jusqu’à une résolution de 10.5 Å. Cette structure permet le placement des structures à haute résolution disponibles de SecYEG, SecDF et YidC afin de générer un modèle quasi-atomique de l’holotranslocon. Les jeu de données ainsi obtenus sont volumineux et souffrent d’un taux élevé de « faux positifs », probablement dû à des réactions de réticulation inter-complexe. C’est pourquoi ils nécessitent une évaluation minutieuse et les résultats intéressants devraient être confirmés par une méthode indépendante. Dans le futur, des études structurales du complexe ribosome-HTL par cryo-ME ainsi qu’une reconstitution de HTL dans des nanodisques vont être menées pour révéler la conformation de HTL en cours de translocation dans un environnement plus physiologique. Des études biochimiques complémentaires sur le mécanisme de co- et post-translocation par HTL et son spectre substrats abordent la question du rôle physiologique de l’holotranslocon dans la cellule. / Targeting of proteins to their proper location in the cell is crucial to the cell. The targeting information is provided in form of a signal sequence by the polypeptide itself. In Escherichia coli, membrane proteins are targeted co-translationally via the signal recognition particle (SRP) to the membrane whereas secretory proteins follow the post-translational translocation pathway characterized by the proteins SecB and SecA involved in the targeting process. Both pathways converge at the protein-conducting channel SecYEG. Interestingly, SecYEG has the possibility to recruit accessory domains SecDF-YajC and YidC, forming the holotranslocon (HTL) complex. Current research on protein translocation mostly focuses on the structure and function of the conserved bacterial heterotrimeric protein conducting channel SecYEG. Not much is known about the structure and function of the additional components of the translocation machinery SecD, SecF and YidC which are essential for E. coli. This is largely due to the lack of a purified, recombinant SecYEG-DF-YidC holotranslocon (HTL) complex. Accordingly, a thorough biophysical and structural analysis of this large, seven-membered transmembrane complex is still pending.Using a new recombineering-based vector system for expression of multi-protein complexes in E. coli, we successfully over-produced the SecYEG-DF-YajC-YidC holotranslocon and its subcomplex consisting of SecDF-YajC-YidC (DFYY). We also succeeded in detergent-solubilising and purifying these complexes. The purified holotranslocon was used to biochemically characterize the complex and to determine the structure of the holotranslocon. First of all, the HTL seems to be more competent for co-translational membrane proteins insertion compared to SecYEG alone. Regarding the post-translational translocation of a β-barrel outer-membrane protein, driven by SecA and ATP, the proton-motive force dependence of this process is increased. Furthermore, the presence of the accessory domains seems to enhance the binding of the ribosome to the translocon. By using cells depleted of SecDF and YajC, we identified possible HTL-substrates which have to be confirmed and further analyzed yet by in vitro translocation experiments.Subsequently, we solved by cryo-electron microscopy (EM) and single particle analysis the structure of the holotranslocon. By comparing the EM reconstructions of the HTL complex with the subcomplex of the accessory domains SecDF-YajC-YidC, we were able to localize the core complex SecYEG. The HTL cryo-EM structure could be refined to a resolution of 10.5 Å. This structure allows the placement of the available high–resolution crystal structure of SecYEG, SecDF, and YidC to generate a quasi-atomic model of the holotranslocon.6In order to confirm our quasi-atomic model, we made use of different crosslinking- and mass spectroscopy-based approaches (CLMS) to characterize the protein-protein interactions within the holotranslocon complex. These CLMS data sets are large and suffer from a high rate of ‘false positives’, possibly caused by inter-complex crosslinks. Thus, they need to be carefully evaluated and interesting fits should be confirmed by an independent method. In the future, structural studies of the ribosome-HTL complex by cryo-EM together with reconstitution of the HTL into nanodiscs will be undertaken to reveal the conformation of the actively translocating HTL in a more physiological environment. Additional biochemical studies on the molecular mechanism of co- and post-translocation by HTL and its substrate spectrum are addressing the question about the physiological role of the holotranslocon in the cell.
63

Structure-function studies of human ribosome complexes / Etudes structure-fonction de complexes du ribosome humain

Khatter, Heena 18 September 2014 (has links)
L’architecture et la régulation de la traduction eucaryote fut pendant longtemps un mystère pour les biologistes. Je présente ici un protocole détaillé pour purifier de manière homogène des ribosomes à partir de cellules HeLa, pour des études biochimiques mais également structurales. En utilisant ces ribosomes, j’ai obtenu des cristaux diffractant à faible résolution, pouvant être utilisés pour de futurs travaux. Une analyse par cryo-microscopie électronique (CME) a abouti à une structure à 5 A de résolution, permettant la construction d’un modèle. De plus, les facteurs eRF1 et eRF3 ont permis des premières études de la terminaison de la traduction par CME. Ces protéines en complexe ont également été étudiées par cristallographie aux rayons-X, montrant des interactions jusqu’alors jamais observées. L’ensemble de ce travail fournit des résultats importants pour la préparation et la description de la structure du ribosome humain, pavant la voie vers l’analyse de complexes fonctionnels. / Ribosomes comprise the translational machinery engaged in synthesizing proteins. The architecture and translation regulation of eukaryotic especially, human ribosomes, has been an enigma for a long time. I established a protocol for purifying homogenous ribosomes from HeLa cells which can be used for structural as well as biochemical analysis. Using these ribosomes, I obtained plate-like crystals of 80S diffracting to low resolution. A cryo electron microscopy analysis of these ribosomes yielded 5 Å resolution structure with secondary structures of rRNA and protein clearly visible. Furthermore, these ribosomes, along with the eukaryotic release factors (eRF1 and eRF3) purified by over-expression in bacteria, formed the basis for translation termination studies using cryo electron microscopy. Simultaneously, eRF1-eRF3 protein complex was explored by X-ray crystallography revealing new interactions. Together, this work paves the way for the analysis of functional ribosome complexes.
64

Mise au point de méthodes de détection d’interaction ligand-macromolécule par RMN du 19F / Setting up a method to detect ligand-macromolecule interaction through 19F NMR

Recht, Raphaël 23 September 2016 (has links)
Les interactions biologiques sont régies par des mécanismes complexes, qui mêlent différentes échelles, de temps comme de taille. C’est le cas du ribosome, un complexe nucléoprotéique responsable de la traduction de l’ARNm en protéines, et ce faisant, une cible thérapeutique primordiale. Or la taille du ribosome procaryote 70S (2.4 MDa) rend difficile l’applications des techniques classiques de criblage de ligands. Au cours de ma thèse, j’ai exploré la possibilité d’utiliser la RMN du fluor pour caractériser les interactions entre des ligands et le ribosome procaryote. Cette approche a été motivée par l’apport de nouvelles méthodes de détection pouvant coupler la versatilité de la RMN (Résonance Magnétique Nucléaire) avec les propriétés de l’atome de fluor. L’atome 19F se prête parfaitement à la RMN, avec son rapport gyromagnétique proche du proton et son abondance isotopique naturelle de 100%. De plus, le fluor est bio-orthogonal au Vivant. Enfin, les caractéristiques physico-chimiques du fluor sont bien exploitées dans la pharmacopée (un quart des antibiotiques en possèdent un groupement). / Biological interactions are under the control of complex mechanisms, across different scales, in time of in size. It is particularly true for the ribosome, a nucleoprotein responsible for the mRNA translation into proteins, and thus, a primary therapeutic target. The size of the prokaryotic 70S ribosome (2.4 MDa) is a problem for the application of classical ligand screening method. During my thesis, I explored using fluorine NMR to characterize the interaction between ligands and the prokaryotic ribosome. This strategy was motivated by new detection approaches that can combine NMR (Nuclear Magnetic Resonance) versatility with the fluorine atom properties. The 19F atom is perfectly suited for NMR, with its gyromagnetic ratio close to the proton one and its isotopic abundance of 100%. Moreover, the fluorine is absent from natural compounds. Finally, the physicochemical characteristics of fluorine are well exploited in the pharmacopeia (a fourth of all antibiotics has a fluorine moiety).
65

Structure, fonction et inhibition du ribosome de Candida albicans / Candida albicans ribosome : structure, function, and inhibition

Bruchlen, David 23 November 2016 (has links)
Candida albicans est un champignon polymorphe, membre de la flore normale humaine, où il réside comme un organisme commensal tout au long de la vie. Cependant, dans certaines circonstances il peut causer des mycoses qui vont des infections superficielles de la peau à des infections systémiques mortelles. Très peu de choses sont connues sur les différences au sein des mécanismes fondamentaux de la croissance cellulaire, comme la synthèse des protéines par exemple, chez C. albicans par rapport aux organismes modèles tel Saccharomyces cerevisiae. À titre d'exemple, il a été démontré que son code génétique ne répond pas au code génétique universel. En effet, le codon CUG, codant normalement une leucine, code une sérine dans ces espèces, en particulier dans les protéines peu exprimées à la surface de la cellule, influençant potentiellement l'interaction de l'organisme avec l'être humain. La compréhension de la façon dont le mécanisme de traduction a lieu dans C. albicans est donc d'une importance cruciale. Le ribosome est la machinerie cellulaire responsable de la biosynthèse des protéines. Trouvé dans chaque organisme vivant, sa fonction est conservée, bien que sa structure puisse varier. Ces variations sont les particularités que nous cherchons à mettre en évidences, en effet elles sont les premières pistes de réponses aux questions concernant le mécanisme de traduction, potentiellement différentes de ce que l’on connait, de plus ces différences constitueront une base solide dans le développement de nouvelles molécules antifongiques. Le premier aspect de cette thèse tente de révéler l'intimité de la structure du ribosome 80S de C. albicans à haute résolution par modélisation in silico et confirmée par une approche de cristallographie aux rayons X. Ce modèle ouvrira la voie à d'autres études structurales de complexes fonctionnels, afin de déterminer la mécanique de la traduction des protéines dans cet organisme. Le deuxième aspect concerne l'inhibition du ribosome de C. albicans. Afin d'identifier des cibles intéressantes, des tests de concentration minimale inhibitrice ont été établies afin de confronter nos hypothèses structurales et de permettre d’évaluer l’efficacité de molécules inhibitrices et de guider le développement de nouveaux médicaments ciblant spécifiquement le ribosome de C. albicans. / Candida albicans is a polymorphic fungus, member of the normal human microbiome, where it resides as a lifelong, harmless commensal organism. Under certain circumstances, however, it can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Very little is known about differences in fundamental mechanisms of cell growth, like protein synthesis for instance, in C. albicans compared to model systems, like Saccharomyces cerevisiae. As an example, it has been shown that its genetic code is not exactly the same as the universal genetic code. Indeed, the CUG codon, which normally specifies leucine, specifies serine in these species, especially in proteins expressed at a low level at the cell surface, potentially influencing the interaction of the organism with the human host. The understanding of how the translation mechanism takes place in C. albicans is therefore of pivotal importance. The ribosome is the cellular machinery responsible for protein biosynthesis. Found in every living organism, its function is conserved, although its structure can vary. These variations are especially what we would like to highlight, since they are indeed the first elements to respond to questions concerning the translation mechanism, potentially different from what is known, and these differences will be a solid foundation in the development of new antifungal molecules. The first aspect of this thesis attempts to reveal the intimacy of the C. albicans 80S ribosome structure at medium high resolution by in silico modelization and confirmed by an X-ray approach. This model will then pave the way for further structural studies of functional complexes, in order to unravel the protein translation mechanism in this organism. The second aspect concerns the inhibition of the C. albicans ribosome. In order to identify interesting druggable spots, MIC assessments have been set so as to justify our hypothesis and to allow for future screening tests and the design of new drugs specifically targeting the C. albicans ribosome.
66

Etude structurale du ribosome eucaryote / Structural study of the eukaryotic ribosome

Garreau de Loubresse, Nicolas 14 December 2012 (has links)
Le ribosome est un complexe cellulaire impliqué dans la catalyse et la coordination des différentes étapes de la traduction de l’information génétique, des ARN messagers aux protéines. Avec une masse moléculaire avoisinant 3.3 méga daltons, le ribosome eucaryote est 40% plus volumineux que son homologue bactérien. Le premier volet de la thèse présente la structure cristallographique du ribosome eucaryote 80S de levure à haute résolution. Cette structure constitue une base solide pour l’étude de la synthèse des protéines chez les eucaryotes ainsi que pour le développement de nouveaux composés thérapeutiques. Le deuxième volet est consacré aux structures cristallographiques de deux familles d’inhibiteurs spécifiques des eucaryotes, les glutarimides et les trichothecenes, en complexe avec le ribosome. Ces inhibiteurs constituent de nouveaux outils pour sonder les fonctions du ribosome et contribueront aux développements de composés par des approches de structure‐based drug design. / The ribosome is large cellular machinery that catalyzes and coordinates every step required to translate the genetic information encoded in messenger RNAs into proteins. With a molecular weight of 3.3 mega daltons, the eukaryotic ribosome is 40% larger compared to its bacterial counterpart. The fist axis of thesis presents the crystal structure of the complete eukaryotic 80S ribosome from yeast at high resolution. This structure constitutes a unique framework for future investigations of protein synthesis in eukaryotes and development of new therapeutic agents. The second axis of the thesis presents the crystal structures of two distinct families of eukaryote‐specific inhibitors, the glutarimides and the trichothecenes, bound the eukaryotic ribosome. These inhibitors constitute new tools to probe the ribosome functions and a starting point for future structure‐based drug design.
67

Trans-traduction chez la bactérie pathogène de l’homme Legionella pneumophila / Trans-translation in the human bacterial pathogen Legionella pneumophila

Brunel, Romain 22 November 2016 (has links)
L'objectif global de ma thèse a été d'étudier un mécanisme cellulaire qui intervient dans la traduction des protéines : la trans-traduction. Nous avons étudié le rôle de ce mécanisme chez notre modèle d'étude, la bactérie pathogène de l'homme Legionella pneumophila, l'agent étiologique de la Légionellose. Ce travail a été réalisé sous forme de deux axes majeurs. D'abord, nous avons démontré l'essentialité de ce mécanisme pour la viabilité de cette bactérie et pour sa capacité à se multiplier intracellulairement dans des cellules eucaryotes. Puis nous avons évalué l'efficacité d'un nouvel antibiotique décrit comme étant un inhibiteur de la trans-traduction, pour le traitement de la Légionellose. Ces deux axes ont été complétés par un troisième axe qui visait la mise en place de la technique de Tn-seq chez L. pneumophila et l'archée Pyrococcus furiosus. Cet axe a permis l'ouverture de mes travaux à la recherche d'autres mécanismes essentiels dont nous ignorons le potentiel comme cible antibiotique, et à l'étude des mécanismes de transfert de gène horizontaux / The global objective of my thesis work was the study of a cellular mechanism involved in protein translation: trans-translation. We studied the role of that mechanism in a model organism, the human bacterial pathogen Legionella pneumophila that causes Legionnaire's disease. This work was performed under two principal axes. First, we demonstrated the essentiality of this mechanism for the growth in vitro and the intracellular multiplication of this bacterium in eukaryotic cells. Then, we assessed the efficiency of a new antibiotic compound described as an inhibitor of trans-translation against the etiologic agents of Legionnaire's disease. These two axes were then completed by a third axis, which aimed at implementing the Tn-seq technique in L. pneumophila and the archaea Pyrococcus furiosus. This approach allowed to open my work to the reseach of other essential mechanisms that could be used as antibiotic targets, and to the study of a mechanism of horizontal gene transfer
68

Impact de la composition du ribosome sur la fidélité de la traduction / Impact of ribosome composition onto translational fidelity

Gillot-Chafia, Sandra 26 June 2018 (has links)
Les ribosomes, acteurs principaux de la synthèse protéique, sont constitués de protéines et d’ARNs. Ces dernières années la notion de "ribosome spécialisé" est apparue. Cela implique que les ribosomes sont hétérogènes dans leur composition protéique et les modifications chimiques des ARNr. Ces différentes populations de ribosome présenteraient des spécificités de traduction différentes. Au cours de ma thèse, je me suis intéressée à une modification chimique des ARNr particulière, les 2’-O-méthylations des riboses, à leur variabilité et à leur rôle dans la fidélité et la régulation de la traduction.Pour réaliser cette étude, un modèle de cellules HeLa a été créé dans lequel la synthèse de la fibrillarine, la méthyltransférase responsable des 2’-O-méthylations, est inhibée par un shRNA (small hairpin RNA) intégré de façon stable dans le génome. L’étude de l’impact de la baisse de la fibrillarine sur les 2’-O-méthylations a permis de montrer que la diminution des méthylations des ARNr est globale mais varie selon la position. Ainsi, certaines positions sont plus sensibles que d’autres à la baisse du taux de fibrillarine.J’ai tout d’abord étudié les effets de la baisse de la méthylation des ARNr sur la traduction globale, par la technique de ribosome profiling. Cette technique est fondée sur le séquençage à haut débit des fragments d’ARNm protégés par les ribosomes. J’ai ainsi pu montrer que 43 gènes candidats étaient différentiellement traduits en condition d’hypométhylation des ARNr. A partir de cette liste j’ai cherché des éléments fonctionnels et/ou moléculaires communs à plusieurs gènes candidats. J’ai par la suite montré que les taux de translecture et de décalage de cadre de lecture augmentaient quand les ARNr sont hypométhylés. La baisse de la méthylation des ARNr entraîne donc une baisse de la fidélité de la traduction.Des études précédentes ont montré que l’initiation IRES-dépendante était impactée par la baisse des méthylations des ARNr. J’ai donc réalisé une étude globale sur l’initiation de la traduction en adaptant la technique de ribosome profiling de façon à identifier spécifiquement les ribosomes en cours d'initiation. J’ai ainsi révélé que 66 sites d’initiation étaient impactés par la baisse de la méthylation des ARNr.Nous avons localisé les positions méthylées les plus impactées sur la structure 3D du ribosome. Ceci nous a permis de regrouper les modifications par région. Nous nous sommes intéressés à un groupe de méthylations conservées entre la levure et l’homme et situées au niveau du tunnel de sortie du peptide. J’ai délété chez S. cerevisiae les snoARNs responsables de ces méthylations. J’ai ensuite cherché à démontrer si la perte de ces méthylations avait un impact sur la croissance cellulaire et la sensibilité à différents antibiotiques. J'ai aussi effectué des mesures de translecture et de décalage de cadre de lecture. L’ensemble de mes résultats a montré que la délétion conjointe de trois des quatre snoARNs impliqués dans les méthylations autour du tunnel de sortie du polypeptide n'a pas d'effet sur la fidélité de la traduction.Au cours de cette étude chez la levure, j’ai révélé un effet inédit de la délétion du gène ASC1 sur la translecture des codons stop. Asc1p est une protéine plateforme associée au ribosome, dont l’absence entraîne une diminution de la translecture du codon stop. Les mécanismes moléculaires impliqués demeurent actuellement inconnus.Au cours de ma thèse, j’ai pu montrer par des approches globales et spécifiques que la baisse de la méthylation des ARNr entraînait des variations spécifiques de l’expression protéique ainsi qu’une diminution spécifique de la fidélité de la traduction. Les mécanismes moléculaires impliquées sont toujours activement recherchés. / Ribosomes are composed of proteins and RNAs. During these last years, the concept of « specialized ribosome » has been revived. This concept is based on the principle that ribosomes are heterogeneous in protein composition and rRNA chemical modifications. These different ribosomes populations would present different translational specificities. During my thesis, I was interested in a particular rRNA chemical modification, ribose 2’-O-methylation, its variability and its role in translational fidelity and regulation.To make this study, a HeLa cell-line in which fibrillarin (the methyltransferase responsible for 2’-O-methylations) synthesis is inhibited by a shRNA (small hairpin RNA) stably integrated in the genome. The study of impact of fibrillarin decrease on 2’-O-methylations enabled us to show that rRNA methylation decrease is global but varies with the position. So, some positions are more sensitive than others positions to fibrillarin decrease.First I studied rRNA methylation decrease effects on global translation, by ribosome profiling. This method is based on high-throughput sequencing of ribosome-protected mRNA fragments. By this way I revealed 43 candidate genes that are differentially translated in rRNA hypomethylated condition. From this list I searched functional and/or molecular elements common to several candidate genes. Then I showed that readthrough and frameshifting rates increase when rRNA is hypomethylated. So rRNA methylation decrease leads to translational fidelity decrease.Previous studies have shown that IRES-dependant initiation is impacted by rRNA methylation decrease. Then I performed a global study of translation initiation by adapting ribosome profiling method to identify initiating ribosomes specifically. Therefore I revealed that 66 initiation sites are impacted by rRNA methylation decrease.We localized the most impacted methylated positions on the 3D ribosome structure. It enabled us to group modifications by region. We focused our interest on one group of methylations conserved between yeast and human and localized around the peptide exit tunnel. I deleted snoRNAs responsible for these methylations in S. cerevisiae. Then I analysed if the loss of these methylations impacts the cell growth and the antibiotics sensitivity. I also make measures of readthrough and frameshifting. My results show that the targeted deletion of three out of four snoRNAs involved in the methylations around the peptide exit tunnel has no effect on translational fidelity.During this study in yeast, I revealed an unprecedented effect of ASC1 gene deletion on stop codons readthrough. Asc1p is a scaffold protein associated with the ribosome, whose absence causes a decrease of codon stop readthrough. Currently molecular mechanisms implicated remain unknown.During my thesis, I showed with global and specific approaches that rRNA methylation decrease leads to specific variations of protein expression together with specific decrease of translational fidelity. Molecular mechanisms are still actively investigated.
69

Metabolite sensing by ribosome arresting peptides / Détection de métabolites par des peptides d'arrêt ribosomaux

Herrero del valle, Alba 27 November 2019 (has links)
Les bactéries doivent s'adapter rapidement aux modifications de leur environnement en ajustant leur modèle d'expression génétique et leurs activités enzymatiques. Dans la plupart des cas, les variations de leur habitat impliquent de petites molécules que les bactéries peuvent détecter et auxquelles elles peuvent réagir. Le ribosome, la machinerie de la cellule qui catalyse la formation de la liaison peptidique, est capable de détecter les métabolites ou les antibiotiques afin de réguler l'expression des gènes, où le peptide naissant au sein du ribosome est capable d’induire l’arrêt de la traduction. Dans ce mécanisme, le peptide en cours de traduction (peptide d'arrêt) bloque le ribosome en interagissant avec les parois du tunnel ribosomal correspondant à la cavité par laquelle le peptide atteint le cytoplasme. L'arrêt peut dépendre uniquement de la séquence du peptide ou bien nécessiter la liaison d’une petite molécule. L’arrêt du ribosome en cours de traduction contrôle à son tour l'expression sur le même ARNm d'un gène situé en aval. Malgré plusieurs études biochimiques et structurales antérieures, le mécanisme exact de détection de ces petits métabolites par le peptide d’arrêt est encore inconnu. Mon travail de doctorat a porté sur : (1) comprendre comment de petites molécules sont détectées par les peptides d'arrêt ribosomaux, et (2) un cas particulier d'arrêt de la traduction dépendant du ligand : la détection des antibiotiques par des peptides d'arrêt courts.Pour répondre au premier problème, j'ai étudié biochimiquement et structurellement un nouveau peptide d'arrêt (appelé SpeFL) qui détecte l’ornithine (un petit métabolite) et qui est codé en amont de l'opéron speF chez Escherichia coli. La structure cryo-EM que j'ai résolue a révélé comment l’ornithine est détectée de manière très spécifique par un complexe ribosomal en cours de traduction. De plus, j'ai montré que le mécanisme d'induction du gène en aval speF implique un arrêt du ribosome au niveau de speFL empêchant ainsi une terminaison prématurée de la transcription Rho-dépendante.Dans la deuxième partie de ma thèse, je me suis concentrée sur la façon dont un antibiotique ciblant les ribosomes, l'érythromycine, est détecté par un peptide d'arrêt court. L'érythromycine est capable de bloquer la traduction de manière séquence-dépendante, où le motif (+)X(+) est le motif principal de blocage. Des données biochimiques publiées antérieurement suggèrent que l'encombrement stérique et électrostatique causé par le premier acide aminé chargé positivement (+) empêche l'addition du second, arrêtant ainsi le ribosome en cours de traduction. La résolution de la structure cryo-EM d'un ribosome arrêté par un peptide MKFR en présence d'érythromycine suggère le contraire, ce qui ouvre la voie à d'autres recherches sur le sujet. / Bacteria need to rapidly adapt to the changing environment by adjusting their gene expression patterns and enzymatic activities. In most cases, the variations in their habitat involve small molecules that bacteria are able to sense and respond to. The ribosome, the machinery of the cell that catalyzes peptide bond formation, is able to detect metabolites or antibiotics to regulate gene expression via nascent-chain mediated translational arrest. In this mechanism, the peptide that is being translated (arrest peptide) stalls the ribosome by interacting with the walls of the ribosomal tunnel, the cavity through which it reaches the cytoplasm. The arrest may depend solely on the sequence of the peptide or need a small molecule to be triggered. Ribosomal stalling in turn, controls the expression of a gene that is located downstream on the same mRNA. Despite previous biochemical and structural studies, the exact mechanism of sensing of small metabolites by the nascent chain is still unknown. My PhD work focused on: (1) understanding how small molecules are sensed by ribosomal arrest peptides, and (2) a special case of ligand-dependent translational arrest: drug sensing by short arrest peptides.To address the first issue, I studied biochemically and structurally a novel L-ornithine sensing arrest peptide (SpeFL) encoded upstream the speF operon in Escherichia coli. The cryo-EM structure that I solved revealed how a small molecule is sensed by a ribosome nascent chain complex in a highly specific manner. Besides, I showed that the mechanism of induction of the downstream gene speF involves ribosomal arrest at speFL preventing premature Rho-dependent transcriptional termination.On the second part of my thesis, I focused on how a ribosome-targeting antibiotic, erythromycin, is sensed by a short arrest peptide. Erythromycin is able to block translation in a sequence dependent manner, with the (+)X(+) motif being the main stalling motif. Previously published biochemical data suggest that steric and static hindrance caused by the first positively charged amino acid prevents the addition of the second one arresting the ribosome. I solved the cryo-EM structure of a ribosome arrested by an MKFR peptide in the presence of erythromycin that shows otherwise and opens up further investigation on the matter.
70

Caractérisation structurale et fonctionnelle de la peptide déformylase du phage Vp16T / Structural and functional characterization of the phage Vp16T peptide deformylase

Nusbaum, Julien 06 December 2016 (has links)
Les protéines en cours de synthèse subissent des modifications très précoces de leur extrémité N-terminale, dès lors que celle-ci émerge du tunnel de sortie du ribosome. La première modification est l’excision de la méthionine initiatrice, assurée par une méthionine aminopeptidase (MetAP), précédée de sa déformylation par une enzyme peptide déformylase (PDF) chez les bactéries et dans les mitochondries et chloroplastes. Ce processus est ubiquitaire et essentiel, et a été décrit dans tout le règne du vivant. Chez les bactéries, les PDFs de type 1B se fixeraient au ribosome à proximité de l’extrémité du tunnel de sortie du peptide naissant, via son hélice α C-terminale. Or des analyses métagénomiques récentes ont révélé la présence insoupçonnée de gènes codant des PDFs putatives chez des virus marins. De manière inattendue, toutes les PDF virales présentent des séquences C-terminales très courtes et dépourvues de l’hélice α3. L’identification de ces PDFs atypiques soulève alors de nouvelles questions quant à leur possible interaction au ribosome et à leur fonction biologique. L’objectif de ma thèse a donc été de réaliser la caractérisation complète et intégrée de la peptide déformylase du bactériophage Vp16T, dont la séquence est l’une des plus courtes connues à ce jour. J’ai montré que le phage Vp16T code une protéine active, in vivo et in vitro, et qu’elle peut se lier au ribosome malgré l’absence d’hélice α C-terminale. La caractérisation structure-fonction de Vp16PDF a révélé des caractéristiques uniques qui pourraient alors expliquer sa fonction au cours de la réplication du phage. Ainsi j’ai montré que l’expression de Vp16PDF chez E. coli modifie la structure de l’enveloppe, induit l’accumulation d’agrégats et finalement inhibe la croissance bactérienne. De plus, l’étude de souches bactériennes mutantes a montré que Vp16PDF interfère spécifiquement avec le repliement et l’adressage de protéines membranaires. Cette dernière fonction pourrait permettre de déstabiliser la membrane de l’hôte et ainsi favoriser la libération des particules virales. / Being synthesized proteins undergo very early changes in their N-terminal end, since it emerges from the outlet channel of the ribosome. The first modification is the excision of the initiator methionine, provided by a methionine aminopeptidase (MetAP), preceded by its deformylating enzyme peptide deformylase (PDF) in bacteria and in mitochondria and chloroplasts. This process is ubiquitous and essential, and has been described in the kingdom of life. In bacteria, Type 1B PDFs would bind to the ribosome near the end of the outlet tunnel of the nascent peptide via its C-terminal helix α. But recent metagenomic analyzes revealed the unexpected presence of genes encoding putative PDFs in marine viruses. Unexpectedly, all viral PDF have very short C-terminal sequences and lacking the α3 helix. The identification of these atypical PDFs then raises new questions about their possible interaction with ribosome and their biological function. The aim of my thesis was therefore to achieve the complete and integrated characterization of peptide deformylase bacteriophage Vp16T, the sequence is one of the shortest known to date. I showed that the phage Vp16T code an active protein in vivo and in vitro, and can bind to the ribosome despite the absence of the C-terminal helix α. The structure-function characterization Vp16PDF revealed unique features that could then explain its function in the replication of the phage. Thus I have shown that expression in E. coli Vp16PDF modifies the envelope structure, induces accumulation of aggregates and ultimately inhibits bacterial growth. In addition, the study of mutant bacterial strains showed that Vp16PDF specifically interfere with the folding and addressing of membrane proteins. This latter function could help destabilize the membrane of the host and thereby promote release of viral particles.

Page generated in 0.0428 seconds