• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation fonctionnelle des gènes NOTCHLESS et MIDASIN lors du développement végétal

Chantha, Sier-Ching January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
2

Étude structurale et fonctionnelle du complexe Rpf2/Rrs1 impliqué dans la biogenèse du ribosome / Structural and functional study of the Rpf2/Rrs1 complex in ribosome biogenesis

Madru, Clément 12 October 2017 (has links)
La biogenèse des ribosomes est un processus complexe qui implique la production et l'assemblage de 4 ARN et d'environ 80 protéines. Chez l'Homme, la production des deux sous-unités ribosomiques débute dans le nucléole par la synthèse par l'ARN polymérase I d'un long transcrit contenant les séquences des ARN ribosomiques 5.8S, 18S et 25S, qui s'associe de manière co-transcriptionnelle à des protéines ribosomiques et à des facteurs d'assemblage. Le quatrième ARN ribosomique, l'ARNr 5S est transcrit séparément par l'ARN polymérase III, et s'associe avec les protéines ribosomiques Rpl5 et Rpl11 en dehors du ribosome. Ce sous-complexe, appelé particule 5S, est ensuite intégré au sein de la grande sous-unité. La particule 5S est également impliquée dans le contrôle de la prolifération cellulaire. En effet, en cas de dé-régulation de la biogenèse du ribosome, la particule 5S s'accumule dans le nucléoplasme et interagit directement avec l'ubiquitine-ligase MDM2, provoquant la stabilisation du suppresseur de tumeur p53. L'objectif principal de ma thèse est d'étudier le rôle des facteurs d'assemblage Rpf2 et Rrs1 dans la biogenèse du ribosome. Ces protéines assurent deux fonctions distinctes : elles sont requises pour l'association de la particule 5S avec la sous-unité pré-60S, et stimulent la transcription des ARNr par l'ARN polymérase I. Elles sont donc impliquées dans deux événements fondamentaux qui conditionnent les capacités de prolifération cellulaire. La combinaison d'études structurales par cristallographie aux rayons X, et d'études d'interactions protéine-ARN in vitro et in vivo, m'ont permis de mieux appréhender le rôle du complexe Rpf2/Rrs1 dans l'intégration de la particule 5S et dans la maturation de la grande sous-unité. J'ai également étudié le rôle du complexe Rpf2/Rrs1 dans la régulation de la transcription des ARNr, en caractérisant ses interactions avec la polymérase I. / Ribosome Biogenesis is a complex process that requires the production and the correct assembly of the 4 rRNA with more than 80 proteins. Ribosome biogenesis starts by the transcription of a pre-RNA precursor in the nucleolus. Three of the four ribosomal RNAs, the 5.8S, 18S, and 25S rRNAs, are cotranscribed as a single 35S precursor by polymerase I. This precursor is cotranscriptionally modified, folded, cleaved, and assembled with both ribosomal proteins and non-ribosomal factors to generate the mature ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S particle, containing ribosomal proteins Rpl5 and Rpl11, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53 The main objective of my thesis was to understand the precise roles of the two assembly factors Rpf2 and Rrs1 in ribosome biogenesis. These proteins have two distinctive functions : Rpf2 and Rrs1 are required for the 5S particle incorporation into the large subunit, and stimulate the rRNA transciption by polymerase I. Using a combination of structural studies by X-Ray crystallography and biochemical approaches as in vitro and in vivo methods to study proteins-RNA interactions, I was able to uncover the function of the Rpf2/Rrs1 dimer in the maturation of the large subunit through the recruitment of the 5S particle. I also studied the function of Rpf2 and Rrs1 in the rRNA transcription regulation, by characterizing physical connection with polymerase I subunits.
3

Compréhension des rôles des complexes Nob1/Pno1 et RPS14/Cinap dans la maturation cytoplasmique de la petite sous-unité ribosomique (pré-40S) chez les eucaryotes / Understanding Nob1/Pno1 and RPS14/Cinap complexes roles in the cytoplasmic maturation of the eukaryotic small ribosomal subunit (pre-40S)

Raoelijaona, Raivoniaina 14 November 2019 (has links)
Les ribosomes sont des complexes nucléoproétiques responsables de la traduction. Chez les eucaryotes, la biogenèse du ribosome est un processus complexe très régulé qui fait intervenir un nombre important de facteurs d’assemblages (~200). La construction d’un ribosome est initiée dans le nucléole puis continue dans le nucléoplasme et se termine dans le cytoplasme. La maturation cytoplasmique de la petite sous-unité ribosomale implique la dissociation séquentielle des facteurs d’assemblage tardifs et la maturation finale de l’ARNr 18S. Ce processus est catalysé par l’endonucléase Nob1 qui assure la coupure de l’extrémité 3’ du précurseur de l’ARNr 18S (pré-18S) aboutissant à sa forme mature. Ce mécanisme est coordonné par la protéine Pno1 qui est le partenaire de Nob1. Des informations détaillées sur l’architecture des particules pré-ribosomiques nous ont permis de mieux comprendre les différents intermédiaires de la biogenèse. Cependant, certains aspects fonctionnels comme la conformation adoptée par Nob1 pour assurer la coupure du site D du pre-18S reste encore flou. L’objectif de mon travail a été de mieux comprendre les aspects très tardifs de la maturation cytoplasmique du ribosome. Pour ce faire, nous avons redéfini l’organisation modulaire de l’endonucléase Nob1 chez les eucaryotes pour ensuite étudier son mode d’interaction avec son partenaire Pno1. Des tests fonctionnels in vitro ont été effectués pour étudier le rôle de Pno1 dans la régulation de la coupure par Nob1.Nos résultats nous ont permis de montrer que le domaine catalytique de Nob1 adopte une conformation atypique. En effet le domaine PIN est composé de deux fragments (res 1-104 and 230-255) séparé par une boucle interne qui est importante pour la reconnaissance avec son partenaire Pno1. Nos études nous ont également montré que Pno1 inhibe l’activité de Nob1 probablement en reconnaissant directement l’ARNr substrat, masquant ainsi le site de coupure de l’endonucléase. Ces résultats sont complémentaires et cohérents avec les données structurales de cryo-EM de la particule pré-40S humaine récemment publiées. En effet, Nob1 est dans une conformation incapable de couper le pré-ARNr puisque son domaine catalytique se retrouve à une distance d’environ 30Å de son ARN substrat. Ce phénomène implique donc des changements de conformations ou encore la nécessité de protéine accessoire pour déplacer certains facteurs. La protéine Cinap est impliqué dans la maturation de l’ARNr 18S. Nos études d’interaction avec les protéines localisées au niveau de la plateforme (à savoir RPS14, RPS26, le complexe Nob1/Pno1) ont permis de montrer que Cinap pouvait former un complexe tripartite avec l’endonucléase Nob1 et son partenaire Pno1. De plus, Cinap est capable de reconnaitre RPS26 dans un complexe RPS14-dépendant. Il est important de noter que RPS26 est un composant de la petite sous-unité qui remplace Pno1 dans le ribosome mature. De ce fait le recrutement de RPS26 au sein du pré-ribosome nécessite la dissociation de Pno1 et cet échange serait assurée par Cinap. Sur la base des travaux effectués, nous pouvons proposer un modèle de maturation où la formation du complexe Cinap/Pno1 induirait un changement de conformation permettant à Nob1 de reconnaitre son substrat et donc de catalyser la coupure du site D qui aboutit à la maturation de l’ARNr 18S et donc à la production de la sous-unité 40S mature. / Ribosomes are translational machineries universally responsible of protein synthesis. In eukaryote, ribosome assembly is a complex and highly regulated process that requires coordinated action of more than 200 biogenesis factors. Ribosome assembly is initiated in the nucleolus, continues in the nucleoplasm and terminates in the cytoplasm. The cytoplasmic maturation events of the small ribosomal subunit are associated with sequential release of the late assembly factors and concomitant maturation of the pre-rRNA. During final maturation of the small subunit, the pre-18S rRNA is cleaved off by the endonuclease Nob1, which activity is coordinated by its binding partner Pno1. Detailed information on pre-ribosomal particle architectures have been provided by structural snapshots of maturation events. However, key functional aspects such as the architecture required for pre-rRNA cleavage have remained elusive. In order to better understand these late steps of cytoplasmic pre-40S maturation, we first redefine the domain organization of Nob1, then study its binding mode with Pno1 using different tools such as sequence analysis, structure prediction and biochemical experiments and, we then performed functional assay to elucidate the role played by Pno1 during the pre-18S rRNA maturation.Our results have shown that eukaryotic Nob1 adopts an atypical PIN domain conformation: two fragments (res 1-104 and 230-255) separated by an internal loop, which is essential for Pno1 recognition. We also found out that Pno1 inhibits Nob1 activity likely by masking the cleavage site. Our findings further support the recently published cryo-EM structure of the pre-40S, where Nob1 displays an inactive conformation. Moreover, 18S rRNA 3’-end cleavage has to happen and this implies structural rearrangement or requirement of some accessory proteins such as Cinap, an atypical kinase involved in pre-18S processing. Studying the interplay between proteins localized in the pre-40S platform (RPS14, RPS26, Nob1/Pno1 complex) has shown that Cinap is able to form a trimeric complex with Nob1 and its binding partner Pno1. Furthermore, Cinap can recognize RPS26 in a RPS14-dependent manner, which had already been studied with its yeast counterpart. It is important to note that RPS26 is the ribosomal protein replacing Pno1 in the mature ribosome. Our finding clearly suggests a mechanism where RPS26 recruitment to the ribosome requires Pno1 dissociation. This exchange would be carried out by Cinap. Therefore, we can suggest a simplified model as follow: upon binding with Pno1, the newly formed complex (Cinap/Pno1) will trigger a conformational change, which will allow the endonuclease Nob1 to reach its substrate (D-site) and perform its cleavage resulting in mature 18 rRNA generation.
4

Rôle du ribosome dans la sénescence

Del Toro Del Toro, Neylen 12 1900 (has links)
La sénescence est considérée comme un mécanisme de suppression tumorale puisque les cellules potentiellement dangereuses, activent leurs protéines de sauvegarde pour arrêter leur prolifération. Les protéines de sauvegarde telles que RB et p53 sont activées suite à différents stress comme des dommages à l’ADN, le raccourcissement des télomères ou l’induction oncogénique. Les cellules sénescentes restent métaboliquement actives, subissent des modifications dans leur expression génique, et sécrètent des cytokines et des chimiokines qui ont des effets paracrines pro-oncogéniques, mais peuvent également contribuer à la stabilité de l’arrêt du cycle cellulaire dans la sénescence de façon autocrine. Une des particularités du phénotype sénescent est la dégradation sélective des protéines dépendante de l’ubiquitination et du protéasome. Parmi les cibles de dégradation se trouvent des protéines impliquées dans la biogenèse du ribosome, ainsi que celles d’autres voies cellulaires requises pour la croissance de cellules cancéreuses. Ceci est lié à un stress nucléolaire qui affecte la biogenèse du ribosome, menant à l’accumulation, dans le nucléoplasme ou le nucléole, de protéines ribosomiques. Ce comportement suggère que les ribosomes des cellules sénescentes seraient structurellement différents. Par conséquent, ceci pourrait entrainer des effets sur leurs capacités à réguler l’initiation, l’élongation et/ou la terminaison de la traduction des ARN messagers (ARNm). Par ailleurs, la déplétion de certaines protéines impliquées dans la ribogenèse, ainsi que la surexpression de protéines ribosomiques telles que RPS14/uS11 amènent à la sénescence. Malgré le stress nucléolaire et les défauts de ribogenèse associés à la sénescence, les cellules sénescentes présentent des niveaux de translecture du codon d’arrêt très diminué, suggérant l’existence de défauts de production de protéines allongées en C-terminal. Nous émettons l’hypothèse que les défauts de la ribogenèse affecteraient la fonction des protéines ribosomiques et des ribosomes. Cette perturbation aurait un impact sur le rôle de suppresseur tumoral de la sénescence. Le premier objectif de cette thèse consiste à démontrer le rôle de RPL22/eL22 en tant que régulateur du cycle cellulaire et inducteur de la sénescence. Le deuxième but est de démontrer que, malgré la perturbation nucléolaire, les ribosomes des fibroblastes sénescents reconnaissent les codons d’arrêt de façon plus efficace que les ribosomes des cellules transformées, ou des cellules normales en prolifération. Nous avons démontré que le phénotype de sénescence peut être induit quand l’expression de RPL22/eL22 est augmentée. RPL22/eL22 s’accumule principalement dans le nucléole, de manière différente de RPS14/uS11, dont l’accumulation est nucléoplasmique. En effectuant des essais kinases in vitro, nous avons montré que RPL22/eL22, tout comme RPS14/uS11, peuvent interagir et inhiber le complexe CDK4-Cycline D1 afin d’activer la voie de RB et établir l’arrêt du cycle cellulaire et la sénescence. Afin de démontrer la fidélité de la terminaison de la traduction dans les cellules sénescentes, nous avons utilisé un système de rapporteurs de luciférases, pour détecter les erreurs de translecture ainsi que pour avoir un contrôle interne du système. L’inactivation de la voie du suppresseur tumoral RB par surexpression de CDK4 ou de l’oncoprotéine virale E7, nous a permis d’observer l’augmentation de la translecture dans les cellules sénescentes. Tandis que l’activation de la voie de suppression tumorale RB, à l’aide du suppresseur de tumeur PML, de la surexpression de RPL22/eL22 et de RPS14/uS11, ainsi que de l’utilisation de Palbociclib (PD-0332991), un inhibiteur des kinases CDK4/6, a montré une réduction des erreurs de translecture. Ces résultats indiquent une nouvelle fonction des protéines du ribosome en tant que suppresseurs de tumeur, permettant d’inhiber les erreurs de translecture du codon d’arrêt de façon dépendante de la voie de RB. Ces travaux suggèrent que de petites molécules ou peptides pourraient simuler les fonctions inhibitrices de ces protéines ribosomiques afin de traiter certains cancers où la voie de RB est activable. / Senescence is considered a mechanism for tumor suppression since potentially dangerous cells activate their protective proteins to stop their proliferation. Safeguard proteins such as RB and p53 are activated as a result of stress such as DNA damage, telomere shortening or oncogenic induction. Senescent cells are metabolically active, they undergo changes in their gene expression and secrete cytokines and chemokines with pro-oncogenic paracrine effects, but which can also contribute to the stability of the senescent cell cycle arrest in an autocrine way. One of the peculiarities of the senescent phenotype is the selective ubiquitination and proteasome dependent-degradation of proteins involved in ribosome biogenesis and other cellular pathways required for cancer cell growth, leading to the accumulation, in the nucleoplasm or nucleolus, of ribosomal proteins. This behavior suggests that the ribosomes of senescent cells are structurally different. Therefore, this could have effects on their ability to regulate the initiation, elongation and/or translation termination of messenger RNAs (mRNAs). Moreover, the depletion of some proteins involved in ribogenesis, as well as the overexpression of ribosomal proteins such as RPS14/uS11 lead to senescence. Despite nucleolar stress and ribogenesis defects associated to senescence, global translation does not seem to be affected in senescence. Strikingly, senescent cells have reduced translational readthrough suggesting that they have defects in the production of C-terminal extended proteins. We hypothesize that defects in ribogenesis would affect the function of ribosomal proteins and ribosomes influencing the tumor suppressor role of senescence. The first aim of this thesis is to demonstrate the role of RPL22/eL22 as a regulator of the cell cycle and senescence inducer. The second aim of this thesis is to demonstrate that, despite the nucleolar disruption, the ribosomes of senescent fibroblasts recognize stop codons more efficiently than ribosomes from transformed cells, but also than ribosomes from proliferating normal cells. We found that the senescent phenotype can be induced by enhancing the expression of RPL22/eL22. RPL22/eL22 accumulates mainly in the nucleolus, unlike RPS14/uS11, whose accumulation is nucleoplasmic. By performing an in vitro kinase assay, we showed that RPL22/eL22, just like RPS14/uS11, can interact and inhibit the CDK4-Cyclin D1 complex in order to activate the RB pathway and establish cellular arrest and senescence. To assess translation termination accuracy in senescent cells, we used a system of luciferase reporters to measure the fidelity of translation termination. Inactivation of the RB tumor suppressor pathway using CDK4 or the viral oncoprotein E7 also increased readthrough in senescent cells while overexpression of PML, a tumor suppressor that activates the RB pathway, overexpression of RPL22/eL22 and RPS14/uS11, as well as the use of Palbociclib (PD-0332991), a CDK4/6 inhibitor, reduce readthrough errors. These results indicate a novel function of ribosomal proteins as tumor suppressors, making it possible to inhibit translational readthrough errors, in a RB-dependent pathway. This work suggests that small molecules or peptides could mimic the inhibitory functions of these ribosomal proteins in order to treat cancers where the RB pathway is activatable.

Page generated in 0.0793 seconds