Spelling suggestions: "subject:"riccati"" "subject:"peccati""
101 |
Distributed Cooperative Communications and Wireless Power TransferWang, Rui 22 February 2018 (has links)
In telecommunications, distributed cooperative communications refer to techniques which allow different users in a wireless network to share or combine their information in order to increase diversity gain or power gain. Unlike conventional point-to-point communications maximizing the performance of the individual link, distributed cooperative communications enable multiple users to collaborate with each other to achieve an overall improvement in performance, e.g., improved range and data rates.
The first part of this dissertation focuses the problem of jointly decoding binary messages from a single distant transmitter to a cooperative receive cluster. The outage probability of distributed reception with binary hard decision exchanges is compared with the outage probability of ideal receive beamforming with unquantized observation exchanges. Low- dimensional analysis and numerical results show, via two simple but surprisingly good approximations, that the outage probability performance of distributed reception with hard decision exchanges is well-predicted by the SNR of ideal receive beamforming after subtracting a hard decision penalty of slightly less than 2 dB. These results, developed in non-asymptotic regimes, are consistent with prior asymptotic results (for a large number of nodes and low per-node SNR) on hard decisions in binary communication systems.
We next consider the problem of estimating and tracking channels in a distributed transmission system with multiple transmitters and multiple receivers. In order to track and predict the effective channel between each transmit node and each receive node to facilitate coherent transmission, a linear time-invariant state- space model is developed and is shown to be observable but nonstabilizable. To quantify the steady-state performance of a Kalman filter channel tracker, two methods are developed to efficiently compute the steady-state prediction covariance. An asymptotic analysis is also presented for the homogenous oscillator case for systems with a large number of transmit and receive nodes with closed-form results for all of the elements in the asymptotic prediction covariance as a function of the carrier frequency, oscillator parameters, and channel measurement period. Numeric results confirm the analysis and demonstrate the effect of the oscillator parameters on the ability of the distributed transmission system to achieve coherent transmission.
In recent years, the development of efficient radio frequency (RF) radiation wireless power transfer (WPT) systems has become an active research area, motivated by the widespread use of low-power devices that can be charged wirelessly. In this dissertation, we next consider a time division multiple access scenario where a wireless access point transmits to a group of users which harvest the energy and then use this energy to transmit back to the access point. Past approaches have found the optimal time allocation to maximize sum throughput under the assumption that the users must use all of their harvested power in each block of the "harvest-then-transmit" protocol. This dissertation considers optimal time and energy allocation to maximize the sum throughput for the case when the nodes can save energy for later blocks. To maximize the sum throughput over a finite horizon, the initial optimization problem is separated into two sub-problems and finally can be formulated into a standard box- constrained optimization problem, which can be solved efficiently. A tight upper bound is derived by relaxing the energy harvesting causality.
A disadvantage of RF-radiation based WPT is that path loss effects can significantly reduce the amount of power received by energy harvesting devices. To overcome this problem, recent investigations have considered the use of distributed transmit beamforming (DTB) in wireless communication systems where two or more individual transmit nodes pool their antenna resources to emulate a virtual antenna array. In order to take the advantages of the DTB in the WPT, in this dissertation, we study the optimization of the feedback rate to maximize the energy efficiency in the WPT system. Since periodic feedback improves the beamforming gain but requires the receivers to expend energy, there is a fundamental tradeoff between the feedback period and the efficiency of the WPT system. We develop a new model to combine WPT and DTB and explicitly account for independent oscillator dynamics and the cost of feedback energy from the receive nodes. We then formulate a "Normalized Weighted Mean Energy Harvesting Rate" (NWMEHR) maximization problem to select the feedback period to maximize the weighted averaged amount of net energy harvested by the receive nodes per unit of time as a function of the oscillator parameters. We develop an explicit method to numerically calculate the globally optimal feedback period.
|
102 |
Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. / Nonlinear H-infinity control and the Hamilton-Jacobi-Isaacs equation.Ferreira, Henrique Cezar 10 December 2008 (has links)
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação. / The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
|
103 |
Applications of Integer Quadratic Programming in Control and CommunicationAxehill, Daniel January 2005 (has links)
<p>The main topic of this thesis is integer quadratic programming with applications to problems arising in the areas of automatic control and communication. One of the most widespread modern control principles is the discrete-time method Model Predictive Control (MPC). The main advantage with MPC, compared to most other control principles, is that constraints on control signals and states can easily be handled. In each time step, MPC requires the solution of a Quadratic Programming (QP) problem. To be able to use MPC for large systems, and at high sampling rates, optimization routines tailored for MPC are used. In recent years, the range of application of MPC has been extended from constrained linear systems to so-called hybrid systems. Hybrid systems are systems where continuous dynamics interact with logic. When this extension is made, binary variables are introduced in the problem. As a consequence, the QP problem has to be replaced by a far more challenging Mixed Integer Quadratic Programming (MIQP) problem. Generally, for this type of optimization problems, the computational complexity is exponential in the number of binary optimization variables. In modern communication systems, multiple users share a so-called multi-access channel, where the information sent by different users is separated by using almost orthogonal codes. Since the codes are not completely orthogonal, the decoded information at the receiver is slightly correlated between different users. Further, noise is added during the transmission. To estimate the information originally sent, a maximum likelihood problem involving binary variables is solved. The process of simultaneously estimating the information sent by multiple users is called multiuser detection. In this thesis, the problem to efficiently solve MIQP problems originating from MPC is addressed. Two different algorithms are presented. First, a polynomial complexity preprocessing algorithm for binary quadratic programming problems is presented. By using the algorithm, some, or all, binary variables can be computed efficiently already in the preprocessing phase. In simulations, the algorithm is applied to unconstrained MPC problems with a mixture of real and binary control signals. It has also been applied to the multiuser detection problem, where simulations have shown that the bit error rate can be significantly reduced by using the proposed algorithm as compared to using common suboptimal algorithms. Second, an MIQP algorithm tailored for MPC is presented. The algorithm uses a branch and bound method where the relaxed node problems are solved by a dual active set QP algorithm. In this QP algorithm, the KKT-systems are solved using Riccati recursions in order to decrease the computational complexity. Simulation results show that both the QP solver and the MIQP solver proposed have lower computational complexity than corresponding generic solvers.</p> / Report code: LiU-TEK-LIC-2005:71.
|
104 |
Optimal Control of Boundary Layer TransitionHögberg, Markus January 2001 (has links)
No description available.
|
105 |
Tools for Control System Design : Stratification of Matrix Pairs and Periodic Riccati Differential Equation SolversJohansson, Stefan January 2009 (has links)
Modern control theory is today an interdisciplinary area of research. Just as much as this can be problematic, it also provides a rich research environment where practice and theory meet. This Thesis is conducted in the borderline between computing science (numerical analysis) and applied control theory. The design and analysis of a modern control system is a complex problem that requires high qualitative software to accomplish. Ideally, such software should be based on robust methods and numerical stable algorithms that provide quantitative as well as qualitative information. The introduction of the Thesis is dedicated to the underlying control theory and to introduce the reader to the main subjects. Throughout the Thesis, the theory is illustrated with several examples, and similarities and differences between the terminology from mathematics, systems and control theory, and numerical linear algebra are highlighted. The main contributions of the Thesis are structured in two parts, dealing with two mainly unrelated subjects. Part I is devoted to the qualitative information which is provided by the stratification of orbits and bundles of matrices, matrix pencils and system pencils. Before the theory of stratification is established the reader is introduced to different canonical forms which reveal the system characteristics of the model under investigation. A stratification reveals which canonical structures of matrix (system) pencils are near each other in the sense of small perturbations of the data. Fundamental concepts in systems and control, like controllability and observability of linear continuous-time systems, are considered and it is shown how these system characteristics can be investigated using the stratification theory. New results are presented in the form of the cover relations (nearest neighbours) for controllability and observability pairs. Moreover, the permutation matrices which take a matrix pencil in the Kronecker canonical form to the corresponding system pencil in (generalized) Brunovsky canonical form are derived. Two novel algorithms for determining the permutation matrices are provided. Part II deals with numerical methods for solving periodic Riccati differential equations (PRDE:s). The PRDE:s under investigation arise when solving the linear quadratic regulator (LQR) problem for periodic linear time-varying (LTV) systems. These types of (periodic) LQR problems turn up for example in motion planning of underactuated mechanical systems, like a humanoid robot, the Furuta pendulum, and pendulums on carts. The constructions of the nonlinear controllers are based on linear versions found by stabilizing transverse dynamics of the systems along cycles. Three different methods explicitly designed for solving the PRDE are evaluated on both artificial systems and stabilizing problems originating from experimental control systems. The methods are the one-shot generator method and two recently proposed methods: the multi-shot method (two variants) and the SDP method. As these methods use different approaches to solve the PRDE, their numerical behavior and performance are dependent on the nature of the underlying control problem. Such method characteristics are investigated and summarized with respect to different user requirements (the need for accuracy and possible restrictions on the solution time). / Modern reglerteknik är idag i högsta grad ett interdisciplinärt forskningsområde. Lika mycket som detta kan vara problematiskt, resulterar det i en stimulerande forskningsmiljö där både praktik och teori knyts samman. Denna avhandling är utförd i gränsområdet mellan datavetenskap (numerisk analys) och tillämpad reglerteknik. Att designa och analysera ett modernt styrsystem är ett komplext problem som erfordrar högkvalitativ mjukvara. Det ideala är att mjukvaran består av robusta metoder och numeriskt stabila algoritmer som kan leverera både kvantitativ och kvalitativ information.Introduktionen till avhandlingen beskriver grundläggande styr- och reglerteori samt ger en introduktion till de huvudsakliga problemställningarna. Genom hela avhandlingen illustreras teori med exempel. Vidare belyses likheter och skillnader i terminologin som används inom matematik, styr- och reglerteori samt numerisk linjär algebra. Avhandlingen är uppdelade i två delar som behandlar två i huvudsak orelaterade problemklasser. Del I ägnas åt den kvalitativa informationen som ges av stratifiering av mångfalder (orbits och bundles) av matriser, matrisknippen och systemknippen. Innan teorin för stratifiering introduceras beskrivs olika kanoniska former, vilka var och en avslöjar olika systemegenskaper hos den undersökta modellen. En stratifiering ger information om bl.a. vilka kanoniska strukturer av matrisknippen (systemknippen) som är nära varandra med avseende på små störningar i datat. Fundamentala koncept i styr- och reglerteori behandlas, så som styrbarhet och observerbarhet av linjära tidskontinuerliga system, och hur dessa systemegenskaper kan undersökas med hjälp av stratifiering. Nya resultat presenteras i form av relationerna för täckande (närmsta grannar) styrbarhets- och observerbarhets-par. Dessutom härleds permutationsmatriserna som tar ett matrisknippe i Kroneckers kanoniska form till motsvarande systemknippe i (generaliserade) Brunovskys kanoniska form. Två algoritmer för att bestämma dessa permutationsmatriser presenteras. Del II avhandlar numeriska metoder för att lösa periodiska Riccati differentialekvationer (PRDE:er). De undersökta PRDE:erna uppkommer när ett linjärt kvadratiskt regulatorproblem för periodiska linjära tidsvariabla (LTV) system löses. Dessa typer av (periodiska) regulatorproblem dyker upp till exempel när man planerar rörelser för understyrda (underactuated) mekaniska system, så som en humanoid (mänsklig) robot, Furuta-pendeln och en vagn med en inverterad (stående) pendel. Konstruktionen av det icke-linjära styrsystemet är baserat på en linjär variant som bestäms via stabilisering av systemets transversella dynamik längs med cirkulära banor. Tre metoder explicit konstruerade för att lösa PRDE:er evalueras på både artificiella system och stabiliseringsproblem av experimentella styrsystem. Metoderna är sk. en- och flerskotts metoder (one-shot, multi-shot) och SDP-metoden. Då dessa metoder använder olika tillvägagångssätt för att lösa en PRDE, beror dess numeriska egenskaper och effektivitet på det underliggande styrproblemet. Sådana metodegenskaper undersöks och sammanfattas med avseende på olika användares behov, t.ex. önskad noggrannhet och tänkbar begränsning i hur lång tid det får ta att hitta en lösning.
|
106 |
H-∞ optimal actuator locationKasinathan, Dhanaraja January 2012 (has links)
There is often freedom in choosing the location of actuators on systems governed by partial differential equations.
The actuator locations should be selected in order to optimize the performance criterion of interest. The main focus of this thesis is to consider H-∞-performance with state-feedback. That is, both the controller and the actuator locations are chosen to minimize the effect of disturbances on the output of a full-information plant.
Optimal H-∞-disturbance attenuation as a function of actuator location is used as the cost function. It is shown that the corresponding actuator location problem is well-posed. In practice, approximations are used to determine the optimal actuator location. Conditions for the convergence of optimal performance and the corresponding actuator location to the exact performance and location are provided. Examples are provided to illustrate that convergence may fail when these conditions are not satisfied.
Systems of large model order arise in a number of situations; including approximation of partial differential equation models and power systems. The system descriptions are sparse when given in descriptor form but not when converted to standard first-order form. Numerical calculation of H-∞-attenuation involves iteratively solving large H-∞-algebraic Riccati equations (H-∞-AREs) given in the descriptor form. An iterative algorithm that preserves the sparsity of the system description to calculate the solutions of large H-∞-AREs is proposed. It is shown that the performance of our proposed algorithm is similar to a Schur method in many cases. However, on several examples, our algorithm is both faster and more accurate than other methods.
The calculation of H-∞-optimal actuator locations is an additional layer of optimization over the calculation of optimal attenuation. An optimization algorithm to calculate H-∞-optimal actuator locations using a derivative-free method is proposed. The results are illustrated using several examples motivated by partial differential equation models that arise in control of vibration and diffusion.
|
107 |
Sliding Mode Control Of Linearly Actuated Nonlinear SystemsDurmaz, Burak 01 June 2009 (has links) (PDF)
This study covers the sliding mode control design for a class of nonlinear systems, where the control input affects the state of the system linearly as described by (d/dt)x=A(x)x+B(x)u+d(x). The main streamline of the study is the sliding surface design for the system. Since there is no systematic way of designing sliding surfaces for nonlinear systems, a moving sliding surface is designed such that its parameters are determined in an adaptive manner to cope with the nonlinearities of the system. This adaptive manner includes only the automatic adaptation of the sliding surface by determining its parameters by means of solving the State Dependent Riccati Equations (SDRE) online during the control process. The two methods developed in this study: SDRE combined sliding control and the pure SDRE with bias terms are applied to a longitudinal model of a generic hypersonic air vehicle to compare the results.
|
108 |
Optimal Control of Boundary Layer TransitionHögberg, Markus January 2001 (has links)
No description available.
|
109 |
Commande robuste multicritère - une approche par la théorie des jeuxJungers, Marc 13 September 2006 (has links) (PDF)
Cette thèse propose d'étudier la robustesse des commandes issues de la théorie des jeux adaptée aux systèmes multientrées, multiobjectifs. De façon générale les stratégies avec une structure d'information en boucle ouverte présentent des propriétés faibles de robustesse et ne peuvent être déterminées qu'a posteriori. Des exemples exhibent certaines limites. Les stratégies avec une structure d'information en boucle fermée sont beaucoup plus ardues à déterminer. Dans le cas d'une stratégie de Nash, un nouvel algorithme utilisant le manque de confiance est présenté pour résoudre les équations couplées algébriques de type Riccati. Pour une stratégie de Stackelberg avec une structure d'information en boucle fermée les conditions nécessaires et suffisantes sont déterminées et appliquées au problème de commande mixte H2 / Hinf. Enfin une extension à des systèmes comportant des incertitudes paramétrées mène à la résolution itérative d'une association non convexe de problèmes d'optimisation.
|
110 |
Une stratégie d'identification robuste pour la localisation et la ruptureNguyen, Hong-Minh 15 December 2006 (has links) (PDF)
L'objectif de la thèse est de proposer une stratégie robuste permettant l'identification en dynamique transitoire de loi de comportement gouvernant la réponse du matériau jusqu'à la rupture. Il s'agit d'être à même d'identifier les paramètres matériaux supposés gouverner la rupture dans un contexte où les données expérimentales sont fortement incertaines. Faisant suite à un premier travail où la stratégie avait été élaborée dans un cadre élastique, le travail s'est concentré sur l'extension de la méthode d'identification pour les cas non linéaires tout d'abord la viscoplasticité puis les modéles d'endommagement à taux limités.<br />Les difficultés rencontrées dans ces cas résident dans la non-linéarité et le caractère instable du problème de minimisation sous contraintes non linéaires auquel la formulation nous amène. Une extension de la méthode LATIN aux problèmes mal posés a été proposée et développée afin de permettre la résolution itérative de ce type de problèmes d'optimisation. La résolution de ces derniers fait appel à une méthode de traitement robuste issue du contrôle optimal et basée sur l'équation de Riccati.<br />Une fois ces difficultés résolues et dans les cas simples unidimensionnels traités pour le moment, la stratégie d'identification proposée s'avère très robuste face aux perturbations des mesures même dans le cas très sévère de la localisation et de la rupture.
|
Page generated in 0.0568 seconds