• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 31
  • 17
  • 3
  • 2
  • 1
  • Tagged with
  • 146
  • 74
  • 55
  • 38
  • 38
  • 37
  • 36
  • 30
  • 28
  • 25
  • 22
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Canonical forms for Hamiltonian and symplectic matrices and pencils

Mehrmann, Volker, Xu, Hongguo 09 September 2005 (has links) (PDF)
We study canonical forms for Hamiltonian and symplectic matrices or pencils under equivalence transformations which keep the class invariant. In contrast to other canonical forms our forms are as close as possible to a triangular structure in the same class. We give necessary and sufficient conditions for the existence of Hamiltonian and symplectic triangular Jordan, Kronecker and Schur forms. The presented results generalize results of Lin and Ho [17] and simplify the proofs presented there.
112

Method for Improving the Efficiency of Image Super-Resolution Algorithms Based on Kalman Filters

Dobson, William Keith 01 December 2009 (has links)
The Kalman Filter has many applications in control and signal processing but may also be used to reconstruct a higher resolution image from a sequence of lower resolution images (or frames). If the sequence of low resolution frames is recorded by a moving camera or sensor, where the motion can be accurately modeled, then the Kalman filter may be used to update pixels within a higher resolution frame to achieve a more detailed result. This thesis outlines current methods of implementing this algorithm on a scene of interest and introduces possible improvements for the speed and efficiency of this method by use of block operations on the low resolution frames. The effects of noise on camera motion and various blur models are examined using experimental data to illustrate the differences between the methods discussed.
113

Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles

Hached, Mustapha 07 December 2012 (has links) (PDF)
Cette thèse porte sur des méthode de résolution d'équations matricielles appliquées à la résolution numérique d'équations aux dérivées partielles ou des problèmes de contrôle linéaire. On s'intéressen en premier lieu à des équations matricielles linéaires. Après avoir donné un aperçu des méthodes classiques employées pour les équations de Sylvester et de Lyapunov, on s'intéresse au cas d'équations linéaires générales de la forme M(X)=C, où M est un opérateur linéaire matriciel. On expose la méthode de GMRES globale qui s'avère particulièrement utile dans le cas où M(X) ne peut s'exprimer comme un polynôme du premier degré en X à coefficients matriciels, ce qui est le cas dans certains problèmes de résolution numérique d'équations aux dérivées partielles. Nous proposons une approche, noté LR-BA-ADI consistant à utiliser un préconditionnement de type ADI qui transforme l'équation de Sylvester en une équation de Stein que nous résolvons par une méthode de Krylox par blocs. Enfin, nous proposons une méthode de type Newton-Krylov par blocs avec préconditionnement ADI pour les équations de Riccati issues de problèmes de contrôle linéaire quadratique. Cette méthode est dérivée de la méthode LR-BA-ADI. Des résultats de convergence et de majoration de l'erreur sont donnés. Dans la seconde partie de ce travail, nous appliquons les méthodes exposées dans la première partie de ce travail à des problèmes d'équations aux dérivées partielles. Nous nous intéressons d'abord à la résolution numérique d'équations couplées de type Burgers évolutives en dimension 2. Ensuite, nous nous intéressons au cas où le domaine borné est choisi quelconque. Nous établissons des résultats théoriques de l'existence de tels interpolants faisant appel à des techniques d'algèbre linéaire.
114

Commande optimale et jeux différentiels linéaires quadratiques

Dello Sbarba, Olivier January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
115

Adaptative high-gain extended Kalman filter and applications

Boizot, Nicolas 30 April 2010 (has links) (PDF)
The work concerns the "observability problem"--the reconstruction of a dynamic process's full state from a partially measured state-- for nonlinear dynamic systems. The Extended Kalman Filter (EKF) is a widely-used observer for such nonlinear systems. However it suffers from a lack of theoretical justifications and displays poor performance when the estimated state is far from the real state, e.g. due to large perturbations, a poor initial state estimate, etc. . . We propose a solution to these problems, the Adaptive High-Gain (EKF). Observability theory reveals the existence of special representations characterizing nonlinear systems having the observability property. Such representations are called observability normal forms. A EKF variant based on the usage of a single scalar parameter, combined with an observability normal form, leads to an observer, the High-Gain EKF, with improved performance when the estimated state is far from the actual state. Its convergence for any initial estimated state is proven. Unfortunately, and contrary to the EKF, this latter observer is very sensitive to measurement noise. Our observer combines the behaviors of the EKF and of the high-gain EKF. Our aim is to take advantage of both efficiency with respect to noise smoothing and reactivity to large estimation errors. In order to achieve this, the parameter that is the heart of the high-gain technique is made adaptive. Voila, the Adaptive High-Gain EKF. A measure of the quality of the estimation is needed in order to drive the adaptation. We propose such an index and prove the relevance of its usage. We provide a proof of convergence for the resulting observer, and the final algorithm is demonstrated via both simulations and a real-time implementation. Finally, extensions to multiple output and to continuous-discrete systems are given.
116

H-∞ optimal actuator location

Kasinathan, Dhanaraja January 2012 (has links)
There is often freedom in choosing the location of actuators on systems governed by partial differential equations. The actuator locations should be selected in order to optimize the performance criterion of interest. The main focus of this thesis is to consider H-∞-performance with state-feedback. That is, both the controller and the actuator locations are chosen to minimize the effect of disturbances on the output of a full-information plant. Optimal H-∞-disturbance attenuation as a function of actuator location is used as the cost function. It is shown that the corresponding actuator location problem is well-posed. In practice, approximations are used to determine the optimal actuator location. Conditions for the convergence of optimal performance and the corresponding actuator location to the exact performance and location are provided. Examples are provided to illustrate that convergence may fail when these conditions are not satisfied. Systems of large model order arise in a number of situations; including approximation of partial differential equation models and power systems. The system descriptions are sparse when given in descriptor form but not when converted to standard first-order form. Numerical calculation of H-∞-attenuation involves iteratively solving large H-∞-algebraic Riccati equations (H-∞-AREs) given in the descriptor form. An iterative algorithm that preserves the sparsity of the system description to calculate the solutions of large H-∞-AREs is proposed. It is shown that the performance of our proposed algorithm is similar to a Schur method in many cases. However, on several examples, our algorithm is both faster and more accurate than other methods. The calculation of H-∞-optimal actuator locations is an additional layer of optimization over the calculation of optimal attenuation. An optimization algorithm to calculate H-∞-optimal actuator locations using a derivative-free method is proposed. The results are illustrated using several examples motivated by partial differential equation models that arise in control of vibration and diffusion.
117

Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. / Nonlinear H-infinity control and the Hamilton-Jacobi-Isaacs equation.

Henrique Cezar Ferreira 10 December 2008 (has links)
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação. / The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
118

A restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem

Benner, P., Faßbender, H. 30 October 1998 (has links) (PDF)
A restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem is presented. The Lanczos vectors are constructed to form a symplectic basis. Breakdowns and near-breakdowns are overcome by inexpensive implicit restarts. The method is used to compute eigenvalues, eigenvectors and invariant subspaces of large and sparse Hamiltonian matrices and low rank approximations to the solution of continuous-time algebraic Riccati equations with large and sparse coefficient matrices.
119

Dampening controllers via a Riccati equation approach

Hench, J. J., He, C., Kučera, V., Mehrmann, V. 30 October 1998 (has links)
An algorithm is presented which computes a state feedback for a standard linear system which not only stabilizes, but also dampens the closed-loop system dynamics. In other words, a feedback gain vector is computed such that the eigenvalues of the closed-loop state matrix are within the region of the left half-plane where the magnitude of the real part of each eigenvalue is greater than the imaginary part. This may be accomplished by solving one periodic algebraic Riccati equation and one degenerate Riccati equation. The solution to these equations are computed using numerically robust algorithms. Finally, the periodic Riccati equation is unusual in that it produces one symmetric and one skew symmetric solution, and as a result two different state feedbacks. Both feedbacks dampen the system dynamics, but produce different closed-loop eigenvalues, giving the controller designer greater freedom in choosing a desired feedback.
120

Newtons method with exact line search for solving the algebraic Riccati equation

Benner, P., Byers, R. 30 October 1998 (has links)
This paper studies Newton's method for solving the algebraic Riccati equation combined with an exact line search. Based on these considerations we present a Newton{like method for solving algebraic Riccati equations. This method can improve the sometimes erratic convergence behavior of Newton's method.

Page generated in 0.0464 seconds