• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Some Aspects of the Differential Operator

Mathew, Panakkal Jesu 28 July 2006 (has links)
The Differential Operator D is a linear operator from C1[0,1] onto C[0,1]. Its domain C1[0,1] is thoroughly studied as a meager subspace of C[0,1]. This is analogous to the status of the set of all rational numbers Q in the set of the real numbers R. On the polynomial vector space Pn the Differential Operator D is a nilpotent operator. Using the invariant subspace and reducing subspace technique an appropriate basis for the underlying vector space can be found so that the nilpotent operator admits its Jordan Canonical form. The study of D on Pn is completely carried out. Finally, the solution space V of the nth order differential equation with leading coefficient one is studied. The behavior of D on V is explored using some notions from linear algebra and linear operators. NOTE- Due to the limitation of the above being in "text only form" , further details of this abstract can be viewed in the pdf file.
2

The Exponential Function of Matrices

Smalls, Nathalie Nicholle 28 November 2007 (has links)
The matrix exponential is a very important subclass of functions of matrices that has been studied extensively in the last 50 years. In this thesis, we discuss some of the more common matrix functions and their general properties, and we specifically explore the matrix exponential. In principle, the matrix exponential could be computed in many ways. In practice, some of the methods are preferable to others, but none are completely satisfactory. Computations of the matrix exponential using Taylor Series, Scaling and Squaring, Eigenvectors, and the Schur Decomposition methods are provided.
3

Software tools for matrix canonical computations and web-based software library environments

Johansson, Pedher January 2006 (has links)
This dissertation addresses the development and use of novel software tools and environments for the computation and visualization of canonical information as well as stratification hierarchies for matrices and matrix pencils. The simplest standard shape to which a matrix pencil with a given set of eigenvalues can be reduced is called the Kronecker canonical form (KCF). The KCF of a matrix pencil is unique, and all pencils in the manifold of strictly equivalent pencils - collectively termed the orbit - can be reduced to the same canonical form and so have the same canonical structure. For a problem with fixed input size, all orbits are related under small perturbations. These relationships can be represented in a closure hierarchy with a corresponding graph depicting the stratification of these orbits. Since degenerate canonical structures are common in many applications, software tools to determine canonical information, especially under small perturbations, are central to understanding the behavior of these problems. The focus in this dissertation is the development of a software tool called StratiGraph. Its purpose is the computation and visualization of stratification graphs of orbits and bundles (i.e., union of orbits in which the eigenvalues may change) for matrices and matrix pencils. It also supports matrix pairs, which are common in control systems. StratiGraph is extensible by design, and a well documented plug-in feature enables it, for example, to communicate with Matlab(TM). The use and associated benefits of StratiGraph are illustrated via numerous examples. Implementation considerations such as flexible software design, suitable data representations, and good and efficient graph layout algorithms are also discussed. A way to estimate upper and lower bounds on the distance between an input S and other orbits is presented. The lower bounds are of Eckhart-Young type, based on the matrix representation of the associated tangent spaces. The upper bounds are computed as the Frobenius norm F of a perturbation such that S + F is in the manifold defining a specified orbit. Using associated plug-ins to StratiGraph this information can be computed in Matlab, while visualization alongside other canonical information remains within StratiGraph itself. Also, a proposal of functionality and structure of a framework for computation of matrix canonical structure is presented. Robust, well-known algorithms, as well algorithms improved and developed in this work, are used. The framework is implemented as a prototype Matlab toolbox. The intention is to collect software for computing canonical structures as well as for computing bounds and to integrate it with the theory of stratification into a powerful new environment called the MCS toolbox. Finally, a set of utilities for generating web computing environments related to mathematical and engineering library software is presented. The web interface can be accessed from a standard web browser with no need for additional software installation on the local machine. Integration with the control and systems library SLICOT further demonstrates the efficacy of this approach.
4

Canonical forms for Hamiltonian and symplectic matrices and pencils

Mehrmann, Volker, Xu, Hongguo 09 September 2005 (has links) (PDF)
We study canonical forms for Hamiltonian and symplectic matrices or pencils under equivalence transformations which keep the class invariant. In contrast to other canonical forms our forms are as close as possible to a triangular structure in the same class. We give necessary and sufficient conditions for the existence of Hamiltonian and symplectic triangular Jordan, Kronecker and Schur forms. The presented results generalize results of Lin and Ho [17] and simplify the proofs presented there.
5

The Kronecker Product

Broxson, Bobbi Jo 01 January 2006 (has links)
This paper presents a detailed discussion of the Kronecker product of matrices. It begins with the definition and some basic properties of the Kronecker product. Statements will be proven that reveal information concerning the eigenvalues, singular values, rank, trace, and determinant of the Kronecker product of two matrices. The Kronecker product will then be employed to solve linear matrix equations. An investigation of the commutativity of the Kronecker product will be carried out using permutation matrices. The Jordan - Canonical form of a Kronecker product will be examined. Variations such as the Kronecker sum and generalized Kronecker product will be introduced. The paper concludes with an application of the Kronecker product to large least squares approximations.
6

Canonical forms for Hamiltonian and symplectic matrices and pencils

Mehrmann, Volker, Xu, Hongguo 09 September 2005 (has links)
We study canonical forms for Hamiltonian and symplectic matrices or pencils under equivalence transformations which keep the class invariant. In contrast to other canonical forms our forms are as close as possible to a triangular structure in the same class. We give necessary and sufficient conditions for the existence of Hamiltonian and symplectic triangular Jordan, Kronecker and Schur forms. The presented results generalize results of Lin and Ho [17] and simplify the proofs presented there.
7

Calculo exacto de la matriz exponencial / Calculo exacto de la matriz exponencial

Agapito, Rubén 25 September 2017 (has links)
We present several methods that allow the exact computation of the exponential matrix etA. Methods that include computation of eigenvectors or Laplace transform are very well-known, and they are mentioned herefor completeness. We also present other methods, not well-known inthe literature, that do not need the computation of eigenvectors, and are easy to introduce in a classroom, thus providing us with general formulas that can be applied to any matrix. / Presentamos varios métodos que permiten el calculo exacto de la matriz exponencial etA. Los métodos que incluyen el calculo de autovectores y la transformada de Laplace son bien conocidos, y son mencionados aquí por completitud. Se mencionan otros métodos, no tan conocidos en la literatura, que no incluyen el calculo de autovectores, y que proveen de fórmulas genéricas aplicables a cualquier matriz.

Page generated in 0.0932 seconds