Spelling suggestions: "subject:"ridge degression"" "subject:"ridge aregression""
61 |
Forecasting hourly electricity consumption for sets of households using machine learning algorithmsLinton, Thomas January 2015 (has links)
To address inefficiency, waste, and the negative consequences of electricity generation, companies and government entities are looking to behavioural change among residential consumers. To drive behavioural change, consumers need better feedback about their electricity consumption. A monthly or quarterly bill provides the consumer with almost no useful information about the relationship between their behaviours and their electricity consumption. Smart meters are now widely dispersed in developed countries and they are capable of providing electricity consumption readings at an hourly resolution, but this data is mostly used as a basis for billing and not as a tool to assist the consumer in reducing their consumption. One component required to deliver innovative feedback mechanisms is the capability to forecast hourly electricity consumption at the household scale. The work presented by this thesis is an evaluation of the effectiveness of a selection of kernel based machine learning methods at forecasting the hourly aggregate electricity consumption for different sized sets of households. The work of this thesis demonstrates that k-Nearest Neighbour Regression and Gaussian process Regression are the most accurate methods within the constraints of the problem considered. In addition to accuracy, the advantages and disadvantages of each machine learning method are evaluated, and a simple comparison of each algorithms computational performance is made. / För att ta itu med ineffektivitet, avfall, och de negativa konsekvenserna av elproduktion så vill företag och myndigheter se beteendeförändringar bland hushållskonsumenter. För att skapa beteendeförändringar så behöver konsumenterna bättre återkoppling när det gäller deras elförbrukning. Den nuvarande återkopplingen i en månads- eller kvartalsfaktura ger konsumenten nästan ingen användbar information om hur deras beteenden relaterar till deras konsumtion. Smarta mätare finns nu överallt i de utvecklade länderna och de kan ge en mängd information om bostäders konsumtion, men denna data används främst som underlag för fakturering och inte som ett verktyg för att hjälpa konsumenterna att minska sin konsumtion. En komponent som krävs för att leverera innovativa återkopplingsmekanismer är förmågan att förutse elförbrukningen på hushållsskala. Arbetet som presenteras i denna avhandling är en utvärdering av noggrannheten hos ett urval av kärnbaserad maskininlärningsmetoder för att förutse den sammanlagda förbrukningen för olika stora uppsättningar av hushåll. Arbetet i denna avhandling visar att "k-Nearest Neighbour Regression" och "Gaussian Process Regression" är de mest exakta metoder inom problemets begränsningar. Förutom noggrannhet, så görs en utvärdering av fördelar, nackdelar och prestanda hos varje maskininlärningsmetod.
|
62 |
House Price PredictionAghi, Nawar, Abdulal, Ahmad January 2020 (has links)
This study proposes a performance comparison between machine learning regression algorithms and Artificial Neural Network (ANN). The regression algorithms used in this study are Multiple linear, Least Absolute Selection Operator (Lasso), Ridge, Random Forest. Moreover, this study attempts to analyse the correlation between variables to determine the most important factors that affect house prices in Malmö, Sweden. There are two datasets used in this study which called public and local. They contain house prices from Ames, Iowa, United States and Malmö, Sweden, respectively.The accuracy of the prediction is evaluated by checking the root square and root mean square error scores of the training model. The test is performed after applying the required pre-processing methods and splitting the data into two parts. However, one part will be used in the training and the other in the test phase. We have also presented a binning strategy that improved the accuracy of the models.This thesis attempts to show that Lasso gives the best score among other algorithms when using the public dataset in training. The correlation graphs show the variables' level of dependency. In addition, the empirical results show that crime, deposit, lending, and repo rates influence the house prices negatively. Where inflation, year, and unemployment rate impact the house prices positively.
|
63 |
Genomic selection can replace phenotypic selection in early generation wheat breedingBorrenpohl, Daniel January 2019 (has links)
No description available.
|
64 |
Assessing Machine Learning Algorithms to Develop Station-based Forecasting Models for Public Transport : Case Study of Bus Network in StockholmMovaghar, Mahsa January 2022 (has links)
Public transport is essential for both residents and city planners because of its environmentally and economically beneficial characteristics. During the past decade climatechange, coupled with fuel and energy crises have attracted significant attention toward public transportation. Increasing the demand for public transport on the one hand and its complexity on the other hand have made the optimum network design quite challenging for city planners. The ridership is affected by numerous variables and features like space and time. These fluctuations, coupled with inherent uncertaintiesdue to different travel behaviors, make this procedure challenging. Any demand and supply mismatching can result in great user dissatisfaction and waste of energy on the horizon. During the past years, due to recent technologies in recording and storing data and advances in data analysis techniques, finding patterns, and predicting ridership based on historical data have improved significantly. This study aims to develop forecasting models by regressing boardings toward population, time of day, month, and station. Using the available boarding dataset for blue bus line number 4 in Stockholm, Sweden, seven different machine learning algorithms were assessed for prediction: Multiple Linear Regression, Decision Tree, Random Forest, Bayesian Ridge Regression, Neural Networks, Support Vector Machines, K-Nearest Neighbors. The models were trained and tested on the dataset from 2012 to 2019, before the start of the pandemic. The best model, KNN, with an average R-squared of 0.65 in 10-fold cross-validation was accepted as the best model. This model is then used to predict reduced ridership during the pandemic in 2020 and 2021. The results showed a reduction of 48.93% in 2020 and 82.24% in 2021 for the studied bus line.
|
65 |
Auto-Tuning Apache Spark Parameters for Processing Large Datasets / Auto-Optimering av Apache Spark-parametrar för bearbetning av stora datamängderZhou, Shidi January 2023 (has links)
Apache Spark is a popular open-source distributed processing framework that enables efficient processing of large amounts of data. Apache Spark has a large number of configuration parameters that are strongly related to performance. Selecting an optimal configuration for Apache Spark application deployed in a cloud environment is a complex task. Making a poor choice may not only result in poor performance but also increases costs. Manually adjusting the Apache Spark configuration parameters can take a lot of time and may not lead to the best outcomes, particularly in a cloud environment where computing resources are allocated dynamically, and workloads can fluctuate significantly. The focus of this thesis project is the development of an auto-tuning approach for Apache Spark configuration parameters. Four machine learning models are formulated and evaluated to predict Apache Spark’s performance. Additionally, two models for Apache Spark configuration parameter search are created and evaluated to identify the most suitable parameters, resulting in the shortest execution time. The obtained results demonstrates that with the developed auto-tuning approach and adjusting Apache Spark configuration parameters, Apache Spark applications can achieve a shorter execution time than when using the default parameters. The developed auto-tuning approach gives an improved cluster utilization and shorter job execution time, with an average performance improvement of 49.98%, 53.84%, and 64.16% for the three different types of Apache Spark applications benchmarked. / Apache Spark är en populär öppen källkodslösning för distribuerad databehandling som möjliggör effektiv bearbetning av stora mängder data. Apache Spark har ett stort antal konfigurationsparametrar som starkt påverkar prestandan. Att välja en optimal konfiguration för en Apache Spark-applikation som distribueras i en molnmiljö är en komplex uppgift. Ett dåligt val kan inte bara leda till dålig prestanda utan också ökade kostnader. Manuell anpassning av Apache Spark-konfigurationsparametrar kan ta mycket tid och leda till suboptimala resultat, särskilt i en molnmiljö där beräkningsresurser tilldelas dynamiskt och arbetsbelastningen kan variera avsevärt. Fokus för detta examensprojekt är att utveckla en automatisk optimeringsmetod för konfigurationsparametrarna i Apache Spark. Fyra maskininlärningsmodeller formuleras och utvärderas för att förutsäga Apache Sparks prestanda. Dessutom skapas och utvärderas två modeller för att söka efter de mest lämpliga konfigurationsparametrarna för Apache Spark, vilket resulterar i kortast möjliga exekveringstid. De erhållna resultaten visar att den utvecklade automatiska optimeringsmetoden, med anpassning av Apache Sparks konfigurationsparameterar, bidrar till att Apache Spark-applikationer kan uppnå kortare exekveringstider än vid användning av standard-parametrar. Den utvecklade metoden för automatisk optimering bidrar till en förbättrad användning av klustret och kortare exekveringstider, med en genomsnittlig prestandaförbättring på 49,98%, 53,84% och 64,16% för de tre olika typerna av Apache Spark-applikationer som testades.
|
66 |
Predicting PV self-consumption in villas with machine learningGALLI, FABIAN January 2021 (has links)
In Sweden, there is a strong and growing interest in solar power. In recent years, photovoltaic (PV) system installations have increased dramatically and a large part are distributed grid connected PV systems i.e. rooftop installations. Currently the electricity export rate is significantly lower than the import rate which has made the amount of self-consumed PV electricity a critical factor when assessing the system profitability. Self-consumption (SC) is calculated using hourly or sub-hourly timesteps and is highly dependent on the solar patterns of the location of interest, the PV system configuration and the building load. As this varies for all potential installations it is difficult to make estimations without having historical data of both load and local irradiance, which is often hard to acquire or not available. A method to predict SC using commonly available information at the planning phase is therefore preferred. There is a scarcity of documented SC data and only a few reports treating the subject of mapping or predicting SC. Therefore, this thesis is investigating the possibility of utilizing machine learning to create models able to predict the SC using the inputs: Annual load, annual PV production, tilt angle and azimuth angle of the modules, and the latitude. With the programming language Python, seven models are created using regression techniques, using real load data and simulated PV data from the south of Sweden, and evaluated using coefficient of determination (R2) and mean absolute error (MAE). The techniques are Linear Regression, Polynomial regression, Ridge Regression, Lasso regression, K-Nearest Neighbors (kNN), Random Forest, Multi-Layer Perceptron (MLP), as well as the only other SC prediction model found in the literature. A parametric analysis of the models is conducted, removing one variable at a time to assess the model’s dependence on each variable. The results are promising, with five out of eight models achieving an R2 value above 0.9 and can be considered good for predicting SC. The best performing model, Random Forest, has an R2 of 0.985 and a MAE of 0.0148. The parametric analysis also shows that while more input data is helpful, using only annual load and PV production is sufficient to make good predictions. This can only be stated for model performance for the southern region of Sweden, however, and are not applicable to areas outside the latitudes or country tested. / I Sverige finns ett starkt och växande intresse för solenergi. De senaste åren har antalet solcellsanläggningar ökat dramatiskt och en stor del är distribuerade nätanslutna solcellssystem, dvs takinstallationer. För närvarande är elexportpriset betydligt lägre än importpriset, vilket har gjort mängden egenanvänd solel till en kritisk faktor vid bedömningen av systemets lönsamhet. Egenanvändning (EA) beräknas med tidssteg upp till en timmes längd och är i hög grad beroende av solstrålningsmönstret för platsen av intresse, PV-systemkonfigurationen och byggnadens energibehov. Eftersom detta varierar för alla potentiella installationer är det svårt att göra uppskattningar utan att ha historiska data om både energibehov och lokal solstrålning, vilket ofta inte är tillgängligt. En metod för att förutsäga EA med allmän tillgänglig information är därför att föredra. Det finns en brist på dokumenterad EA-data och endast ett fåtal rapporter som behandlar kartläggning och prediktion av EA. I denna uppsats undersöks möjligheten att använda maskininlärning för att skapa modeller som kan förutsäga EA. De variabler som ingår är årlig energiförbrukning, årlig solcellsproduktion, lutningsvinkel och azimutvinkel för modulerna och latitud. Med programmeringsspråket Python skapas sju modeller med hjälp av olika regressionstekniker, där energiförbruknings- och simulerad solelproduktionsdata från södra Sverige används. Modellerna utvärderas med hjälp av determinationskoefficienten (R2) och mean absolute error (MAE). Teknikerna som används är linjär regression, polynomregression, Ridge regression, Lasso regression, K-nearest neighbor regression, Random Forest regression, Multi-Layer Perceptron regression. En additionell linjär regressions-modell skapas även med samma metodik som används i en tidigare publicerad rapport. En parametrisk analys av modellerna genomförs, där en variabel exkluderas åt gången för att bedöma modellens beroende av varje enskild variabel. Resultaten är mycket lovande, där fem av de åtta undersökta modeller uppnår ett R2-värde över 0,9. Den bästa modellen, Random Forest, har ett R2 på 0,985 och ett MAE på 0,0148. Den parametriska analysen visar också att även om ingångsdata är till hjälp, är det tillräckligt att använda årlig energiförbrukning och årlig solcellsproduktion för att göra bra förutsägelser. Det måste dock påpekas att modellprestandan endast är tillförlitlig för södra Sverige, från var beräkningsdata är hämtad, och inte tillämplig för områden utanför de valda latituderna eller land.
|
67 |
PV self-consumption: Regression models and data visualizationTóth, Martos January 2022 (has links)
In Sweden the installed capacity of the residential PV systems is increasing every year. The lack of feed-in-tariff-scheme makes the techno-economic optimization of the PV systems mainly based on the self-consumption. The calculation of this parameter involves hourly building loads and hourly PV generation. This data cannot be obtained easily from households. A predictive model based on already available data would be preferred and needed in this case. The already available machine learning models can be suitable and have been tested but the amount of literature in this topic is fairly low. The machine learning models are using a dataset which includes real measurement data of building loads and simulated PV generation data and the calculated self-consumption data based on these two inputs. The simulation of PV generation can be based on Typical Meteorological Year (TMY) weather file or on measured weather data. The TMY file can be generated quicker and more easily, but it is only spatially matched to the building load, while the measured data is matched temporally and spatially. This thesis investigates if the usage of TMY file leads to any major impact on the performance of the regression models by comparing it to the measured weather file model. In this model the buildings are single-family houses from south Sweden region. The different building types can have different load profiles which can affect the performance of the model. Because of the different load profiles, the effect of using TMY file may have more significant impact. This thesis also compares the impact of the TMY file usage in the case of multifamily houses and also compares the two building types by performance of the machine learning models. The PV and battery prices are decreasing from year to year. The subsidies in Sweden offer a significant tax credit on battery investments with PV systems. This can make the batteries profitable. Lastly this thesis evaluates the performance of the machine learning models after adding the battery to the system for both TMY and measured data. Also, the optimal system is predicted based on the self-consumption, PV generation and battery size. The models have high accuracy, the random forest model is above 0.9 R2for all cases. The results confirm that using the TMY file only leads to marginal errors, and it can be used for the training of the models. The battery model has promising results with above 0.9 R2 for four models: random forest, k-NN, MLP and polynomial. The prediction of the optimal system model has promising results as well for the polynomial model with 18% error in predicted payback time compared to the reference. / I Sverige ökar den installerade kapaciteten för solcellsanläggningarna för bostäder varje år. Bristen på inmatningssystem gör att den tekniska ekonomiska optimeringen av solcellssystemen huvudsakligen bygger på egen konsumtion. Beräkningen av denna parameter omfattar byggnadsbelastningar per timme och PV-generering per timme. Dessa uppgifter kan inte lätt erhållas från hushållen. En prediktiv modell baserad på redan tillgängliga data skulle vara att föredra och behövas i detta fall. De redan tillgängliga maskininlärningsmodellerna kan vara lämpliga och redan testade men mängden litteratur i detta ämne är ganska låg. Maskininlärningsmodellerna använder en datauppsättning som inkluderar verkliga mätdata från byggnader och simulerad PV-genereringsdata och den beräknade egenförbrukningsdata baserad på dessa två indata. Simuleringen av PV-generering kan baseras på väderfilen Typical Meteorological Year (TMY) eller på uppmätta väderdata. TMY-filen kan genereras snabbare och enklare, men den anpassas endast rumsligt till byggnadsbelastningen, medan uppmätta data är temporärt och rumsligt. Denna avhandling undersöker om användningen av TMY-fil leder till någon större påverkan på prestandan genom att jämföra den med den uppmätta väderfilsmodellen. I denna modell är byggnaderna småhus från södra Sverige. De olika byggnadstyperna kan ha olika belastningsprofiler vilket kan påverka modellens prestanda. På grund av dessa olika belastningsprofiler kan effekten av att använda TMY-fil ha mer betydande inverkan. Den här avhandlingen jämför också effekten av TMY-filanvändningen i fallet med flerfamiljshus och jämför också de två byggnadstyperna efter prestanda för maskininlärningsmodellerna. PV- och batteripriserna minskar från år till år. Subventionerna i Sverige ger en betydande skattelättnad på batteriinvesteringar med solcellssystem. Detta kan göra batterierna lönsamma. Slutligen utvärderar denna avhandling prestandan för maskininlärningsmodellerna efter att ha lagt till batteriet i systemet för både TMY och uppmätta data. Det optimala systemet förutsägs också baserat på egen förbrukning, årlig byggnadsbelastning, årlig PV-generering och batteristorlek. Modellerna har hög noggrannhet, den slumpmässiga skogsmodellen är över 0,9 R2 för alla fall. Resultaten bekräftar att användningen av TMY-filen endast leder till marginella fel, och den kan användas för träning av modellerna. Batterimodellen har lovande resultat med över 0,9 R2 för fyra modeller: random skog, k-NN, MLP och polynom. Förutsägelsen av den optimala systemmodellen har också lovande resultat för polynommodellen med 18 % fel i förutspådd återbetalningstid jämfört med referensen.
|
68 |
兩種正則化方法用於假設檢定與判別分析時之比較 / A comparison between two regularization methods for discriminant analysis and hypothesis testing李登曜, Li, Deng-Yao Unknown Date (has links)
在統計學上,高維度常造成許多分析上的問題,如進行多變量迴歸的假設檢定時,當樣本個數小於樣本維度時,其樣本共變異數矩陣之反矩陣不存在,使得檢定無法進行,本文研究動機即為在進行兩群多維常態母體的平均數檢定時,所遇到的高維度問題,並引發在分類上的研究,試圖尋找解決方法。本文研究目的為在兩種不同的正則化方法中,比較何者在檢定與分類上表現較佳。本文研究方法為以 Warton 與 Friedman 的正則化方法來分別進行檢定與分類上的分析,根據其檢定力與分類錯誤的表現來判斷何者較佳。由分析結果可知,兩種正則化方法並沒有絕對的優劣,須視母體各項假設而定。 / High dimensionality causes many problems in statistical analysis. For instance, consider the testing of hypotheses about multivariate regression models. Suppose that the dimension of the multivariate response is larger than the number of observations, then the sample covariance matrix is not invertible. Since the inverse of the sample covariance matrix is often needed when computing the usual likelihood ratio test statistic (under normality), the matrix singularity makes it difficult to implement the test . The singularity of the sample covariance matrix is also a problem in classification when the linear discriminant analysis (LDA) or the quadratic discriminant analysis (QDA) is used.
Different regularization methods have been proposed to deal with the singularity of the sample covariance matrix for different purposes. Warton (2008) proposed a regularization procedure for testing, and Friedman (1989) proposed a regularization procedure for classification. Is it true that Warton's regularization works better for testing and Friedman's regularization works better for classification? To answer this question, some simulation studies are conducted and the results are presented in this thesis.
It is found that neither regularization method is superior to the other.
|
69 |
Data-Driven Predictions of Heating Energy Savings in Residential BuildingsLindblom, Ellen, Almquist, Isabelle January 2019 (has links)
Along with the increasing use of intermittent electricity sources, such as wind and sun, comes a growing demand for user flexibility. This has paved the way for a new market of services that provide electricity customers with energy saving solutions. These include a variety of techniques ranging from sophisticated control of the customers’ home equipment to information on how to adjust their consumption behavior in order to save energy. This master thesis work contributes further to this field by investigating an additional incentive; predictions of future energy savings related to indoor temperature. Five different machine learning models have been tuned and used to predict monthly heating energy consumption for a given set of homes. The model tuning process and performance evaluation were performed using 10-fold cross validation. The best performing model was then used to predict how much heating energy each individual household could save by decreasing their indoor temperature by 1°C during the heating season. The highest prediction accuracy (of about 78%) is achieved with support vector regression (SVR), closely followed by neural networks (NN). The simpler regression models that have been implemented are, however, not far behind. According to the SVR model, the average household is expected to lower their heating energy consumption by approximately 3% if the indoor temperature is decreased by 1°C.
|
70 |
Contrôle des fausses découvertes lors de la sélection de variables en grande dimension / Control of false discoveries in high-dimensional variable selectionBécu, Jean-Michel 10 March 2016 (has links)
Dans le cadre de la régression, de nombreuses études s’intéressent au problème dit de la grande dimension, où le nombre de variables explicatives mesurées sur chaque échantillon est beaucoup plus grand que le nombre d’échantillons. Si la sélection de variables est une question classique, les méthodes usuelles ne s’appliquent pas dans le cadre de la grande dimension. Ainsi, dans ce manuscrit, nous présentons la transposition de tests statistiques classiques à la grande dimension. Ces tests sont construits sur des estimateurs des coefficients de régression produits par des approches de régressions linéaires pénalisées, applicables dans le cadre de la grande dimension. L’objectif principal des tests que nous proposons consiste à contrôler le taux de fausses découvertes. La première contribution de ce manuscrit répond à un problème de quantification de l’incertitude sur les coefficients de régression réalisée sur la base de la régression Ridge, qui pénalise les coefficients de régression par leur norme l2, dans le cadre de la grande dimension. Nous y proposons un test statistique basé sur le rééchantillonage. La seconde contribution porte sur une approche de sélection en deux étapes : une première étape de criblage des variables, basée sur la régression parcimonieuse Lasso précède l’étape de sélection proprement dite, où la pertinence des variables pré-sélectionnées est testée. Les tests sont construits sur l’estimateur de la régression Ridge adaptive, dont la pénalité est construite à partir des coefficients de régression du Lasso. Une dernière contribution consiste à transposer cette approche à la sélection de groupes de variables. / In the regression framework, many studies are focused on the high-dimensional problem where the number of measured explanatory variables is very large compared to the sample size. If variable selection is a classical question, usual methods are not applicable in the high-dimensional case. So, in this manuscript, we develop the transposition of statistical tests to the high dimension. These tests operate on estimates of regression coefficients obtained by penalized linear regression, which is applicable in high-dimension. The main objective of these tests is the false discovery control. The first contribution of this manuscript provides a quantification of the uncertainty for regression coefficients estimated by ridge regression in high dimension. The Ridge regression penalizes the coefficients on their l2 norm. To do this, we devise a statistical test based on permutations. The second contribution is based on a two-step selection approach. A first step is dedicated to the screening of variables, based on parsimonious regression Lasso. The second step consists in cleaning the resulting set by testing the relevance of pre-selected variables. These tests are made on adaptive-ridge estimates, where the penalty is constructed on Lasso estimates learned during the screening step. A last contribution consists to the transposition of this approach to group-variables selection.
|
Page generated in 0.0701 seconds