Spelling suggestions: "subject:"riemann"" "subject:"niemann""
271 |
Discrete moments of the Riemann zeta function and Dirichlet L-functions / Riemann'o dzeta funkcijos ir Dirichlet L-funkcijų diskretieji momentaiKalpokas, Justas 19 November 2012 (has links)
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems that concern the integers. It is often said to have begun with Dirichlet's introduction of Dirichlet L-functions. In analytic number theory one of the main investigation objects is the Riemann zeta function. The Riemann hypothesis states that all non-trivial zeros of the Riemann zeta function lie on the critical line. In the thesis we investigate value distribution of the Riemann zeta function on the critical line. To do so we use the curve of the Riemann zeta function on the critical line. A problem connected to the curve asks the question whether the curve is dense in the complex plane. We prove that the curve expands to all directions on the complex plane. A separete case of the main result can be stated as follows Riemann zeta function has infinetly many negative values on the critical line and they are unbounded. / Analizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos.
|
272 |
Riemann'o dzeta funkcijos ir Dirichlet L-funkcijų diskretieji momentai / Discrete moments of the Riemann zeta function and Dirichlet L-functionsKalpokas, Justas 19 November 2012 (has links)
Analizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos. / In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems that concern the integers. It is often said to have begun with Dirichlet's introduction of Dirichlet L-functions. In analytic number theory one of the main investigation objects is the Riemann zeta function. The Riemann hypothesis states that all non-trivial zeros of the Riemann zeta function lie on the critical line. In the thesis we investigate value distribution of the Riemann zeta function on the critical line. To do so we use the curve of the Riemann zeta function on the critical line. A problem connected to the curve asks the question whether the curve is dense in the complex plane. We prove that the curve expands to all directions on the complex plane. A separete case of the main result can be stated as follows Riemann zeta function has infinetly many negative values on the critical line and they are unbounded.
|
273 |
Sudėtinės funkcijos universalumas / Universality of one composite functionTamašauskaitė, Ugnė 30 July 2013 (has links)
Sudėtinės funkcijos universalumo įrodymas. / Bachelor thesis about universality of one composite function.
|
274 |
Variations of Li's criterion for an extension of the Selberg classDroll, ANDREW 09 August 2012 (has links)
In 1997, Xian-Jin Li gave an equivalence to the classical Riemann hypothesis,
now referred to as Li's criterion, in terms of the non-negativity of a particular
infinite sequence of real numbers. We formulate the analogue of Li's criterion as
an equivalence for the generalized quasi-Riemann hypothesis for functions in an
extension of the Selberg class, and give arithmetic formulae for the corresponding
Li coefficients in terms of parameters of the function in question. Moreover, we
give explicit non-negative bounds for certain sums of special values of polygamma
functions, involved in the arithmetic formulae for these Li coefficients, for a wide class of functions. Finally, we discuss an existing result on correspondences between
zero-free regions and the non-negativity of the real parts of finitely many Li
coefficients. This discussion involves identifying some errors in the original source work which seem to render one of its theorems conjectural. Under an appropriate
conjecture, we give a generalization of the result in question to the case of Li coefficients corresponding to the generalized quasi-Riemann hypothesis. We also
give a substantial discussion of research on Li's criterion since its inception, and
some additional new supplementary results, in the first chapter. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-07-31 13:14:03.414
|
275 |
Ribinė teorema Rymano dzeta funkcijos Melino transformacijai / A limit theorem for the Mellin transform of the Riemann zeta-functionRemeikaitė, Solveiga 02 August 2011 (has links)
Darbe pateikta funkcijų tyrimo apžvalga, svarbiausi žinomi rezultatai, suformuluota problema. Pagrindinė ribinė teorema įrodoma, taikant tikimybinius metodus, analizinių funkcijų savybes, aproksimavimo absoliučiai konvertuojančiu integralu principą. / The main limit theorem is proved using probabilistic methods, the analytical functions of the properties.
|
276 |
Higher Derivatives of the Hurwitz Zeta FunctionMusser, Jason 01 August 2011 (has links)
The Riemann zeta function ζ(s) is one of the most fundamental functions in number theory. Euler demonstrated that ζ(s) is closely connected to the prime numbers and Riemann gave proofs of the basic analytic properties of the zeta function. Values of the zeta function and its derivatives have been studied by several mathematicians. Apostol in particular gave a computable formula for the values of the derivatives of ζ(s) at s = 0. The Hurwitz zeta function ζ(s,q) is a generalization of ζ(s). We modify Apostolʼs methods to find values of the derivatives of ζ(s,q) with respect to s at s = 0. As a consequence, we obtain relations among certain important constants, the generalized Stieltjes constants. We also give numerical estimates of several values of the derivatives of ζ(s,q).
|
277 |
On Witten multiple zeta-functions associated with semisimple Lie algebras ITsumura, Hirofumi, Matsumoto, Kohji January 2006 (has links)
No description available.
|
278 |
Development And Validation Of Two-dimensional Depth-averaged Free Surface Flow SolverYilmaz, Burak 01 January 2003 (has links) (PDF)
A numerical solution algorithm based on finite volume method is developed for
unsteady, two-dimensional, depth-averaged shallow water flow equations. The model
is verified using test cases from the literature and free surface data obtained from
measurements in a laboratory flume. Experiments are carried out in a horizontal,
rectangular channel with vertical solid boxes attached on the sidewalls to obtain freesurface
data set in flows where three-dimensionality is significant. Experimental data
contain both subcritical and supercritical states. The shallow water equations are
solved on a structured, rectangular grid system. Godunov type solution procedure
evaluates the interface fluxes using an upwind method with an exact Riemann solver.
The numerical solution reproduces analytical solutions for the test cases successfully.
Comparison of the numerical results with the experimental two-dimensional free
surface data is used to illustrate the limitations of the shallow water equations and
improvements necessary for better simulation of such cases.
|
279 |
On algorithms for coding and decoding algebraic-geometric codes and their implementationMarhenke, Jörg. January 2008 (has links)
Ulm, Univ., Diss., 2008.
|
280 |
P-adic vector bundles on curves and abelian varieties and representations of the fundamental groupLudsteck, Thomas. January 2008 (has links)
Stuttgart, Univ., Diss., 2008.
|
Page generated in 0.0443 seconds