• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 94
  • 90
  • 16
  • 15
  • 15
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 462
  • 106
  • 95
  • 53
  • 52
  • 49
  • 47
  • 44
  • 43
  • 39
  • 38
  • 37
  • 34
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Compactness Theorems for The Spaces of Distance Measure Spaces and Riemann Surface Laminations

Divakaran, D January 2014 (has links) (PDF)
Gromov’s compactness theorem for metric spaces, a compactness theorem for the space of compact metric spaces equipped with the Gromov-Hausdorff distance, is a theorem with many applications. In this thesis, we give a generalisation of this landmark result, more precisely, we give a compactness theorem for the space of distance measure spaces equipped with the generalised Gromov-Hausdorff-Levi-Prokhorov distance. A distance measure space is a triple (X, d,µ), where (X, d) forms a distance space (a generalisation of a metric space where, we allow the distance between two points to be infinity) and µ is a finite Borel measure. Using this result we prove that the Deligne-Mumford compactification is the completion of the moduli space of Riemann surfaces under the generalised Gromov-Hausdorff-Levi-Prokhorov distance. The Deligne-Mumford compactification, a compactification of the moduli space of Riemann surfaces with explicit description of the limit points, and the closely related Gromov compactness theorem for J-holomorphic curves in symplectic manifolds (in particular curves in an algebraic variety) are important results for many areas of mathematics. While Gromov compactness theorem for J-holomorphic curves in symplectic manifolds, is an important tool in symplectic topology, its applicability is limited by the lack of general methods to construct pseudo-holomorphic curves. One hopes that considering a more general class of objects in place of pseudo-holomorphic curves will be useful. Generalising the domain of pseudo-holomorphic curves from Riemann surfaces to Riemann surface laminations is a natural choice. Theorems such as the uniformisation theorem for surface laminations by Alberto Candel (which is a partial generalisation of the uniformisation theorem for surfaces), generalisations of the Gauss-Bonnet theorem proved for some special cases, and topological classification of “almost all" leaves using harmonic measures reinforces the usefulness of this line on enquiry. Also, the success of essential laminations, as generalised incompressible surfaces, in the study of 3-manifolds suggests that a similar approach may be useful in symplectic topology. With this motivation, we prove a compactness theorem analogous to the Deligne-Mumford compactification for the space of Riemann surface laminations.
232

Effective estimates for coverings of curves over number fields / Estimations effectives pour les revêtements des courbes sur corps de nombres

Strambi, Marco 04 December 2009 (has links)
Le but de cette thèse est d'obtenir des versions totalement explicite de deux résultats fondamentales sur les revêtements de courbes algébriques: le Théorème d'existence de Riemann et le théorème de Chevalley-Weil. La motivation de notre travail sur le Théorème d'existence de Riemann réside dans le domaine de l'analyse diophantienne effective, lorsque la technique des revêtements est largement utilisé: trés souvent il arrive qu'on ne connait que le degré du revêtement et les points de ramification, et pour travailler avec le revêtement il faut en avoir une description efficace. Le théorème de Chevalley-Weil est également indispensable dans l'analyse diophantienne, car il permet de réduire un problème diophantien sur la variété V à celui sur le revêtement W, ce qui peut être plus simple à étudier. Dans la thèse on obtient une version du théorème de Chevalley-Weil en dimension 1, explicite en tous les paramètres et nettement meilleur que les versions précédentes. / The purpose of this thesis is to obtain totally explicit versions for two fundamental results about coverings of algebraic curves: the Riemann Existence Theorem and the Chevalley-Weil Theorem. The motivation behind our work about Riemann Existence Theorem lies in the field of effective Diophantine analysis, where the covering technique is widely used: it happens quite often that only the degree of the covering and the ramification points are known, and to work with the covering curve, one needs to have an effective description of it. The Chevalley-Weil theorem is also indispensable in the Diophantine analysis because it reduces a Diophantine problem on the variety V to that on the covering variety W, which can often be simpler to deal. In the thesis we obtain a version of the Chevalley-Weil theorem in dimension 1, explicit in all parameters and considerably sharper than the previous versions. / La tesi si propone di ottenere versioni totalmente esplicite di due risultati fondamentali riguardanti rivestimenti di curve algebriche: il teorema di esistenza di Riemann e il teorema di Chevalley-Weil. Le motivazioni del nostro lavoro sul teorema di esistenza di Riemann risiedono nella analisi diofantea effettiva, dove le tecniche di rivestimento sono ampiamente utilizzate: capita spesso di conoscere solo il grado e i punti di ramificazione di un rivestimento, e per lavorare con la curva e' necessario averne una descrizione esplicita. Il teorema di Chevalley-Weil e' altrettanto indispensabile in analisi diofantea poiche' riduce un problema diofanteo su una varieta' V a quello di un rivestimento W, dove spesso e' piu' facile lavorare. Nella tesi otteniamo una versione totalmente esplicita del teorema di Chevalley-Weil in dimensione 1, con stime molto migliori di quelle precedentemente conosciute.
233

Application de Riemann-Hilbert-Birkhoff / Riemann-Hilbert-Birkhoff map

Paolantoni, Thibault 20 December 2017 (has links)
L'application exponentielle duale est une façon d'encoder les matrices de Stokes d'une connexion sur un fibré trivial sur la sphère de Riemann avec deux pôles : un pôle double en 0 et un pôle simple en l'infini.On donne ici une formule pour l'application exponentielle duale comme une série formelle non commutative. D'autres généralisations de cette formule sont données. / The exponential dual map is a way to encode Stokes data of a connection on a trivial vector bundle on the Riemann sphere with two poles: one double pole at 0 and one simple pole at infinity.We give here a formula for the exponential dual map expressed as a non commutative serie. Others generalizations of this formula are given.
234

Analytische und numerische Verfahren zur Berechnung der Hilbert-Transformation und zur Lösung funktionentheoretischer Randwertaufgaben

Martin, Frank 17 December 2010 (has links)
In der Arbeit werden effektive Verfahren zur Auswertung der Hilbert-Transformation entwickelt und zur Lösung nichtlinearer Randwertaufgaben der Funktionentheorie eingesetzt. Die Verwendung polynomialer Spline-Wavelets und geeignet modifizierter Wavelet-Algorithmen ermöglichen die schnelle Berechnung auf gleichmäßigen und ungleichmäßigen Gittern sowie deren automatische Anpassung an lokale Besonderheiten der Lösung. Die detaillierte Untersuchung des Zusammenhangs zwischen der Glattheit, der Größe des Trägers des Splines, der Anzahl verschwindender Momente und des asymptotischen Verhaltens der Hilbert-Transformierten erlaubt die Anpassung der Parameter des Verfahrens in Bezug auf Genauigkeit und Effektivität. Im zweiten Teil der Arbeit werden verschiedene Algorithmen zur Lösung von Riemann-Hilbert Probleme vorgeschlagen und deren Konvergenzverhalten untersucht. Die theoretischen Ergebnisse werden durch numerische Experimente bestätigt.
235

Analyse mathématique et simulation numérique des modèles d'écoulements bouillants pour la thermohydraulique des centrales nucléaires / On the mathematical analysis and the numerical simulation of boiling flow models in nuclear power plants thermal hydraulics

Nguyen, Thi Phuong Kieu 29 January 2016 (has links)
Nous avons étudié des méthodes de volumes finis pour la simulation numérique d'un flux impliquant deux phases incompressibles ou deux phases générales compressibles en déséquilibre mécanique. Les principales difficultés du régime où il y a une apparition de phase ou une disparition de phase est la singularité de la vitesse. Nous montrons que l'utilisation du l'entropie correction améliorer beaucoup ces problèmes. Enfin, nous simulons certains tests numériques importants pour vérifier les méthodes numériques, telles que la séparation de phase par gravité ou un canal bouillant. / We investigated some finite volume methods for the numerical simulation of a flow involving two incompressible phases or general two compressible phases in mechanical disequilibrium. The main difficulties of the regime where there is either a phase appearance or a phase disappearance is the singularity of the velocity. We show that using the entropy fix will much improve these problems. Finally, we perfom some important numerical tests to verify the numerical methods, such as a phase separation by gravity or a boiling channel.
236

An Introduction to the Generalized Riemann Integral and Its Role in Undergraduate Mathematics Education

Bastian, Ryan 06 September 2017 (has links)
No description available.
237

Riemann hypothesis for the zeta function of a function field over a finite field

Ranorovelonalohotsy, Marie Brilland Yann 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: See the full text for the abstract / AFRIKAANSE OPSOMMING: Sien volteks vir die opsomming
238

ON A PALEY-WIENER THEOREM FOR THE ZS-AKNS SCATTERING TRANSFORM

Walker, Ryan D. 01 January 2013 (has links)
In this thesis, we establish an analog of the Paley-Wiener Theorem for the ZS-AKNS scattering transform on a set of real potentials. We also demonstrate one application of our techniques to the study of an inverse spectral problem for a half-line Miura potential Schroedinger equation.
239

Familles à un paramètre de surfaces en genre 2

Rodriguez, Olivier 08 December 2010 (has links) (PDF)
Cette thèse porte sur certaines familles à un paramètre de surfaces de Riemann compactes de genre 2 définies par des surfaces de translation. Les familles que nous considérons constituent des géodésiques de Teichmüller dans l'espace des modules. Nous nous attachons en particulier à décrire ces surfaces par leurs matrices des périodes et par les équations des courbes algébriques associées. Nous étudions notamment les automorphismes admissibles par les surfaces qui sont des courbes réelles à trois composantes réelles dans ces familles. Le principal résultat consiste en une caractérisation explicite des matrices des périodes des courbes réelles à trois composantes réelles appartenant à la famille obtenue par projection dans l'espace des modules de la SL(2,R)-orbite de la surface de translation en "L" pavée par trois carreaux. Nous montrons enfin, grâce à une interprétation en termes de transformations de Schwarz-Christoffel, comment calculer numériquement une équation de la courbe algébrique définie par une surface de translation en "L".
240

Short-time Asymptotic Analysis of the Manakov System

Espinola Rocha, Jesus Adrian January 2006 (has links)
The Manakov system appears in the physics of optical fibers, as well as in quantum mechanics, as multi-component versions of the Nonlinear Schr\"odinger and the Gross-Pitaevskii equations.Although the Manakov system is completely integrable its solutions are far from being explicit in most cases. However, the Inverse Scattering Transform (IST) can be exploited to obtain asymptotic information about solutions.This thesis will describe the IST of the Manakov system, and its asymptotic behavior at short times. I will compare the focusing and defocusing behavior, numerically and analytically, for squared barrier initial potentials. Finally, I will show that the continuous spectrum gives the dominant contribution at short-times.

Page generated in 0.0553 seconds