• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 1
  • Tagged with
  • 22
  • 22
  • 10
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithmique des courbes algébriques pour la cryptologie

Gaudry, Pierrick 08 October 2008 (has links) (PDF)
Dans ce mémoire, nous présentons divers travaux sur le thème de l'algorithmique des courbes algébriques en vue d'applications à la cryptologie. Nous décrivons des algorithmes pour le calcul de logarithmes discrets, problème dont la difficulté est à la base de la sécurité des cryptosystèmes s'appuyant sur les courbes. Une première classe d'algorithmes regroupe les techniques du type «calcul d'index»; une seconde les méthodes liées à la restriction de Weil. Viennent ensuite des algorithmes permettant le calcul du nombre de points d'une courbe définie sur un corps fini. Ceux-ci se répartissent en trois catégories: l'algorithme de Schoof et ses généralisations, les algorithmes p-adiques s'appuyant sur un relèvement canonique, et les méthodes p-adiques issues de l'algorithme de Kedlaya. Nous traitons d'autres aspects pouvant être utiles lors de la conception de cryptosystèmes à bases de courbes, en particulier des formules efficaces pour la loi de groupe en genre 2, issues de la théorie des fonctions Thêta. Pour finir, nous mentionnons des travaux liés à l'arithmétique efficace et son implantation logicielle, notamment des travaux sur l'algorithme de Schönhage-Strassen et sur une bibliothèque pour les corps finis.
2

Familles à un paramètre de surfaces en genre 2

Rodriguez, Olivier 08 December 2010 (has links) (PDF)
Cette thèse porte sur certaines familles à un paramètre de surfaces de Riemann compactes de genre 2 définies par des surfaces de translation. Les familles que nous considérons constituent des géodésiques de Teichmüller dans l'espace des modules. Nous nous attachons en particulier à décrire ces surfaces par leurs matrices des périodes et par les équations des courbes algébriques associées. Nous étudions notamment les automorphismes admissibles par les surfaces qui sont des courbes réelles à trois composantes réelles dans ces familles. Le principal résultat consiste en une caractérisation explicite des matrices des périodes des courbes réelles à trois composantes réelles appartenant à la famille obtenue par projection dans l'espace des modules de la SL(2,R)-orbite de la surface de translation en "L" pavée par trois carreaux. Nous montrons enfin, grâce à une interprétation en termes de transformations de Schwarz-Christoffel, comment calculer numériquement une équation de la courbe algébrique définie par une surface de translation en "L".
3

Transformations hyperboliques et courbes algebriques en genre 2 et 3

AIGON, Aline 19 September 2001 (has links) (PDF)
Le théorème<br />d'uniformisation de Poincaré-Koebe permet d'affirmer que toute<br />surface de Riemann compacte de genre $g>1$ est un quotient du<br />demi-plan de Poincaré par un groupe Fuchsien.<br /> D'un autre coté, une surface de Riemann est aussi une courbe algébrique<br />complexe. En genres 2 et 3, ces courbes peuvent toujours être<br />réalisées comme des courbes planes, i.e l'ensemble des zeros<br />d'une équation polynomiale homogène à coefficients complexes<br />$P(x,y,z)=0$.<br /><br />Dans cette thèse, on s'intéresse au lien explicite entre ces deux<br />descriptions pour les surfaces de genres 2 et 3 ayant des<br />automorphismes non-triviaux.<br /><br />En genre 2, on s'intéresse d'abords aux surfaces ayant une<br />involution non-triviale. On décrit la correspondance entre les<br />actions de deux groupes opérant l'un sur les structures<br />algébriques, l'autre sur les structures hyperboliques de ces<br />surfaces. La relation liant ces deux groupes permet d'interpréter<br />en terme de twists de Dehn et demi-twists les relations entre les<br />différents revêtements ramifiés au dessus de cinq points de<br />$\mathbb{P}^1(\mathbb{C})$, avec notamment une lecture sur les<br />équations de certains twists de Dehn. On fait une étude<br />similaire pour des surfaces ayant un automorphisme d'ordre 3. On<br />étudie ensuite des familles spéciales algébriques, définies par<br />moins de paramètres que l'espace ambiant (sans que cela<br />corresponde nécessairement à la présence d'automorphismes<br />supplémentaires). On s'intéresse enfin à des familles réelles.<br />On montre notamment que les différents groupes permettent<br />d'exprimer des relations algebrico-géométriques entre surfaces<br />ayant des types topologiques pour la partie réelle différents.<br /><br />En genre 3, nous étudions les relations entre les équations des<br />quatre revêtements doubles de genre 3 d'une courbe de genre 1,<br />ramifiés au dessus de quatre points donnés et montrons comment on<br />peut aussi en décrire la structure hyperbolique dans le cas où<br />ils sont pavés par deux hexagones hyperboliques droits.
4

Effectivité dans le théorème d'irréductibilité de Hilbert

Walkowiak, Yann 17 December 2004 (has links) (PDF)
Le théorème d'irréductibilité de Hilbert assure l'existence d'une spécialisation conservant l'irréductibilité d'un polynôme à plusieurs variables et à coefficients rationnels. Des versions effectives ont été données par P. Dèbes (1993) puis par U. Zannier et A. Schinzel (1995). Nous proposons ici diverses tentatives d'améliorer ces résultats effectifs : méthode de Dörge, méthode des congruences inspirée par un article de M. Fried et enfin une utilisation des résultats récents de R. Heath-Brown sur les points entiers d'une courbe algébrique. Cette dernière voie va nous permettre d'améliorer significativement les résultats connus. On finira par une application à la recherche d'un algorithme polynomial pour la factorisation d'un polynôme à deux indéterminées.
5

Étude des fibres singulières des systèmes de Mumford impairs et pairs / Study of the singular fibers of the odd and even Mumford systems

Fittouhi, Yasmine 20 January 2017 (has links)
Cette thèse est consacrée à l'étude des fibres de l'application moment du système de Mumford (pair ou impair) d'ordre g>0. Ces fibres sont paramétrées par des courbes hyperelliptiques de genre g. Comme l'a démontré Mumford, la fibre au-dessus d'une telle courbe lisse est la jacobienne de la courbe, moins son diviseur thêta. Nous décrivons les fibres au-dessus d'une courbe singulière, à la fois de manière algébrique et géométrique. Pour ce faire, nous utilisons de façon essentielle les g champs de vecteurs du système de Mumford, qui définissent une stratification de chaque fibre, où chaque strate est isomorphe à une strate particulière (dite maximale) d'une fibre d'un système de Mumford d'ordre inférieur. Sur cette strate, tous les champs de vecteurs du système de Mumford sont linéairement indépendants en tout point. Nous décrivons cette strate comme un ouvert de la jacobienne généralisée d'une courbe hyperelliptique singulière. Nous montrons également que sur la jacobienne généralisée, les champs de Mumford sont des champs invariants par translation. / This thesis is dedicated to the study and to the description of the fibres of the momentum map of the (even or odd) Mumford system of degree g>0. These fibres are parameterized by hyperelliptic curves. Mumford proved that each fiber over a smooth curve is isomorphic to the Jacobian of the curve, minus its theta divisor. We give a geometrical as well as an algebraic description of the fibers over any singular curve. The geometrical description uses in an essential way the g vector field of the Mumford system. They define a stratification of each fiber where each stratum is isomorphic to a particular stratum, called the maximal stratum, of a fiber of a Mumford system of degree at most g. The algebraic description uses the theory of subresultants, which is applied to the polynomials which parametrize the points of phase space. We show that every stratum is isomorphic with an affine part of the generalized Jacobian of a singular hyperelliptic curve. We also prove that the Mumford vector fields are translation invariant on these generalized Jacobians.
6

Formules de Thomae généralisées à des courbes galoisiennes résolubles sur la droite projective / Generalized Thomae Formula for galoisian solvable curves on the projective line

Le Meur, Alexandre 31 August 2017 (has links)
Les formules de Thomae classiques (1869) permettent de relier au moyen d'une relation algébrique les points branches d'une courbe hyperelliptique avec les thêta constantes de sa jacobienne. Ces formules donnent notamment un moyen de calculer les thêta constantes d'une courbe hyperelliptique connaissant ses points de ramification ou bien, à l'inverse, de retrouver la courbe en connaissant le theta null point de sa jacobienne. Ceci fournit une réalisation effective du théorème de Torelli. Plus récemment, plusieurs auteurs dont Zemel et Farkas ont proposé une généralisation de ces formules pour des courbes cycliques totalement ramifiées sur la droite projective. Nous nous intéressons dans cette thèse à une généralisation de ces formules pour des courbes galoisiennes résolubles de degré n sur la droite projective. La construction de telles formules suit la stratégie décrite par Farkas et Zemel. Cependant, les points non totalement ramifiés ne décrivent pas des points de n-torsion de la Jacobienne de la courbe via l'application d'Abel-Jacobi. Pour remédier à cet obstacle, nous composons T par theta, où T agit comme une moyenne décrite par un sous-groupe du groupe de Galois de la courbe possédant certaines propriétés. Afin de décrire les zéros de translatés de cette application composée, nous écrivons un analogue du théorème de Riemann sur les zéros de theta. Enfin, nous exhibons un exemple d'une courbe définie par un revêtement de degré 2 suivi de deux revêtements de degré 3 dans laquelle on obtient des formules de Thomae généralisées. / The classical Thomae formulae (1869) provide algebraic relations between the branch points of an hyperelliptic curve and the theta constants of its Jacobian. These formula can be seen as a way to calculate these theta constants from the data of the ramification points of the hyperelliptic curve or in the other way around, to find the curve whose Jacobian is given by its theta null point. This can be seen as an effective version of Torelli's theorem. More recently, several authors including Zemel and Farkas have proposed a generalization of these formula for cyclic curves that are totally ramified on the projective line. In this thesis, we are interested in a generalization of these formula for curves of degree n with a solvable Galois group over the projective line. The construction of such formula follows the strategy developed by Farkas and Zemel. However, the points that are not totally ramified don't describe n-torsion points on the Jacobian of the curve via the Abel-Jacobi map. In order to solve this difficulty, we consider the composed map of T by theta, where T is a mean described by a sub-group of the Galois group of the curve with several properties. We write an analogous of the Riemann's theorem in order to describe the zeros of translates of this composed map. Finally, we show an example of a curve defined by a cover of degree 2 followed by two covers of degree 3 for which we can compute generalized Thomae formulae.
7

On the security of short McEliece keys from algebraic andalgebraic geometry codes with automorphisms / Étude de la sécurité de certaines clés compactes pour le schéma de McEliece utilisant des codes géométriques

Barelli, Elise 10 December 2018 (has links)
En 1978, McEliece introduit un schéma de chiffrement à clé publique issu de la théorie des codes correcteurs d’erreurs. L’idée du schéma de McEliece est d’utiliser un code correcteur dont lastructure est masquée, rendant le décodage de ce code difficile pour toute personne ne connaissant pas cette structure. Le principal défaut de ce schéma est la taille de la clé publique. Dans ce contexte, on se propose d'étudier l'utilisation de codes dont on connaît une représentation compacte, en particulier le cas de codes quais-cyclique ou quasi-dyadique. Les deux familles de codes qui nous intéressent dans cette thèse sont: la famille des codes alternants et celle des sous--codes sur un sous--corps de codes géométriques. En faisant agir un automorphisme $sigma$ sur le support et le multiplier des codes alternants, on saitqu'il est possible de construire des codes alternants quasi-cycliques. On se propose alors d'estimer la sécurité de tels codes à l'aide du textit{code invariant}. Ce sous--code du code public est constitué des mots du code strictement invariant par l'automorphisme $sigma$. On montre ici que la sécurité des codes alternants quasi-cyclique se réduit à la sécurité du code invariant. Cela est aussi valable pour les sous—codes sur un sous--corps de codes géométriques quasi-cycliques. Ce résultat nous permet de proposer une analyse de la sécurité de codes quasi-cycliques construit sur la courbe Hermitienne. En utilisant cette analyse nous proposons des clés compactes pour la schéma de McEliece utilisant des sous-codes sur un sous-corps de codes géométriques construits sur la courbe Hermitienne. Le cas des codes alternants quasi-dyadiques est aussi en partie étudié. En utilisant le code invariant, ainsi que le textit{produit de Schur}et le textit{conducteur} de deux codes, nous avons pu mettre en évidence une attaque sur le schéma de McEliece utilisant des codes alternants quasi-dyadique de degré $2$. Cette attaque s'applique notamment au schéma proposé dans la soumission DAGS, proposé dans le contexte de l'appel du NIST pour la cryptographie post-quantique. / In 1978, McEliece introduce a new public key encryption scheme coming from errors correcting codes theory. The idea is to use an error correcting code whose structure would be hidden, making it impossible to decode a message for anyone who do not know a specific decoding algorithm for the chosen code. The McEliece scheme has some advantages, encryption and decryption are very fast and it is a good candidate for public-key cryptography in the context of quantum computer. The main constraint is that the public key is too large compared to other actual public-key cryptosystems. In this context, we propose to study the using of some quasi-cyclic or quasi-dyadic codes. In this thesis, the two families of interest are: the family of alternant codes and the family of subfield subcode of algebraic geometry codes. We can construct quasi-cyclic alternant codes using an automorphism which acts on the support and the multiplier of the code. In order to estimate the securtiy of these QC codes we study the em{invariant code}. This invariant code is a smaller code derived from the public key. Actually the invariant code is exactly the subcode of code words fixed by the automorphism $sigma$. We show that it is possible to reduce the key-recovery problem on the original quasi-cyclic code to the same problem on the invariant code. This is also true in the case of QC algebraic geometry codes. This result permits us to propose a security analysis of QC codes coming from the Hermitian curve. Moreover, we propose compact key for the McEliece scheme using subfield subcode of AG codes on the Hermitian curve. The case of quasi-dyadic alternant code is also studied. Using the invariant code, with the em{Schur product} and the em{conductor} of two codes, we show weaknesses on the scheme using QD alternant codes with extension degree 2. In the case of the submission DAGS, proposed in the context of NIST competition, an attack exploiting these weakness permits to recover the secret key in few minutes for some proposed parameters.
8

Familles à un paramètre de surfaces en genre 2 / One parameter families of surfaces in genus 2

Rodriguez, Olivier 08 December 2010 (has links)
Cette thèse porte sur certaines familles à un paramètre de surfaces de Riemann compactes de genre 2 définies par des surfaces de translation. Les familles que nous considérons constituent des géodésiques de Teichmüller dans l'espace des modules.Nous nous attachons en particulier à décrire ces surfaces par leurs matrices des périodes et par les équations des courbes algébriques associées.Nous étudions notamment les automorphismes admissibles par les surfaces de certaines de ces familles.Le principal résultat consiste en une caractérisation explicite des matrices des périodes des courbes réelles à trois composantes réelles appartenant à la famille obtenue par projection dans l'espace des modules de la SL(2,R)-orbite de la surface de translation en «L» pavée par trois carreaux.Nous montrons enfin, grâce à une interprétation en termes de transformations de Schwarz-Christoffel, comment calculer numériquement une équation de la courbe algébrique définie par une surface de translation en «L». / In this thesis we study some one parameter families of compact Riemann surfaces of genus 2 defined by translation surfaces.The families we consider are Teichmüller geodesics in the moduli space.We mainly describe these surfaces by means of period matrices and equations of the associated algebraic curves.We study admissible automorphisms for surfaces in some of those families.The main result is an explicit characterisation of period matrices of real curves with three real components belonging to the family obtained by projecting the SL(2,R)-orbit of the «L»-shaped translation surface tiled by three squares into the moduli space.We finally show, using an interpretation in terms of Schwarz-Christoffel transformations, how to numerically compute an equation of the algebraic curve defined by a «L»-shaped translation surface.
9

Fibres vectoriels sur des courbes hyperelliptiques / Vector bundles on hyperelliptic curves

Fernández Vargas, Néstor 04 April 2018 (has links)
Cette thèse est dédiée à l'étude des espaces de modules de fibrés sur une courbe algébrique et lisse sur le corps des nombres complexes.  Le texte est composé de deux parties : Dans la première partie, je m'intéresse à la géométrie liée aux classifications de fibrés quasi-paraboliques de rang 2 sur une courbe elliptique 2-pointée, à isomorphisme près. Les notions d'indécomposabilité, simplicité et stabilité de fibrés donnent lieu à des espaces de modules qui classifient ces objets.  La structure projective de ces espaces est décrite explicitement, et on prouve un théorème de type Torelli qui permet de retrouver la courbe elliptique 2-pointée.  Cet espace de modules est aussi mis en relation avec l'espace de modules de fibrés quasi-paraboliques sur une courbe rationnelle 5-pointée, qui apparaît naturellement comme revêtement double de l'espace de modules de fibrés quasi-paraboliques sur la courbe elliptique 2-pointée. Finalement, on démontre explicitement la modularité des automorphismes de cet espace de modules. Dans la deuxième partie, j'étudie l'espace de modules de fibrés semistables de rang 2 et déterminant trivial sur une courbe hyperelliptique. Plus précisément, je m'intéresse à l'application naturelle donnée par le fibré déterminant, générateur du groupe de Picard de cet espace de modules. Cette application  s'identifie à l'application theta, qui est de degré 2 dans notre cas. On définit une fibration de cet espace de modules vers un espace projective dont la fibre générique est birationnelle à l'espace de modules de courbes rationnelles 2g-épointées, et on décrit la restriction de theta aux fibres de cette fibration. On montre que cette restriction est, à une transformation birationnelle près, une projection osculatoire centrée en un point. En utilisant une description due à Kumar, on démontre que la restriction de l'application theta à cette fibration ramifie sur la variété de Kummer d'une certaine courbe hyperelliptique de genre g – 1. / This thesis is devoted to the study of moduli spaces of vector bundles over a smooth algebraic curve over field of complex numbers. The text consist of two main parts : In the first part, I investigate the geometry related to the classifications of rank 2 quasi-parabolic vector bundles over a 2-pointed elliptic curves, modulo isomorphism. The notions of indecomposability, simplicity and stability give rise to the corresponding moduli spaces classifying these objects. The projective structure of these spaces is explicitely described, and we prove a Torelli theorem that allow us to recover the 2-pointed elliptic curve. I also explore the relation with the moduli space of quasi-parabolic vector bundles over a 5-pointed rational curve, appearing naturally as a double cover of the moduli space of quasi-parabolic vector bundles over the 2-pointed elliptic curve. Finally, we show explicitely the modularity of the automorphisms of this moduli space. In the second part, I study the moduli space of semistable rank 2 vector bundles with trivial determinant over a hyperelliptic curve C. More precisely, I am interested in the natural map induced by the determinant line bundle, generator of the Picard group of this moduli space. This map is identified with the theta map, which is of degree 2 in our case. We define a fibration from this moduli space to a projective space whose generic fiber is birational to the moduli space of 2g-pointed rational curves, and we describe the restriction of the map theta to the fibers of this fibration. We show that this restriction is, up to a birational map, an osculating projection centered on a point. By using a description due to Kumar, we show that the restriction of the map theta to this fibration ramifies over the Kummer variety of a certain hyperelliptic curve of genus g - 1.
10

Sur quelques aspects des champs de revêtements de courbes algébriques

ROMAGNY, Matthieu 29 November 2002 (has links) (PDF)
L'objet de cette thèse est l'étude des champs algébriques de revêtements galoisiens de courbes algébriques, avec un intérêt spécial pour la caractéristique positive. On établit tout d'abord des résultats concernant les actions de schémas en groupes sur les champs: existence et algébricité des champs de points fixes et champs quotients; lien avec le champ classifiant du groupe. Dans toute la suite on considère des groupes finis~$G,G'$ d'ordres~$n,n'$. Utilisant la théorie de Hurwitz des revêtements modérés de courbes, on exhibe tout d'abord un champ qui est une compactification lisse du champ~${\cal M}_g(G')$ des courbes de genre~$g$ avec structure de niveau~$G'$. C'est aussi une désingularisation, modulaire qui plus est, du champ propre donné par Deligne et Mumford en normalisant le champ des courbes stables de genre~$g$ dans~${\cal M}_g(G')$. Ensuite, grâce à l'action de certains groupes sur le champ produit ci-dessus, on propose une compactification du champ des courbes de genre~$g$ avec action de~$G$, la base comprenant cette fois-ci les caractéristiques qui divisent~$n$. Cette compactification est lisse a priori seulement au-dessus des caractéristiques premières à~$n$. Puis, on se penche sur l'aspect local de la ramification sauvage. Supposons que~$G$ agit sur un schéma~$X$ au-dessus d'un anneau de valuation discrète d'inégales caractéristiques (la caractéristique résiduelle divisant~$n$) et que l'action est fidèle sur la fibre générique. On souhaite trouver un modèle pour~$G$ qui agisse fidèlement y compris sur la fibre spéciale, avec une propriété d'unicité. Si~$X$ est propre cela est assez facile. Lorsque~$X$ est affine nous donnons une méthode, utilisant les éclatements de Néron, qui mène conjecturalement à une construction effective de ce modèle. Dans le cas du groupe cyclique d'ordre~$p$, cette méthode fournit la structure précise des revêtements de courbes lisses. Enfin nous concluons par un exemple qui illustre les questions traitées dans la thèse.

Page generated in 0.0751 seconds