• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 1
  • Tagged with
  • 22
  • 22
  • 10
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive / Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic

Basson, Romain 24 June 2015 (has links)
L'objet de cette thèse est une description effective des espaces de modules des courbes hyper- elliptiques de genre 3 en caractéristiques positives. En caractéristique nulle ou impaire, on obtient une paramétrisation de ces espaces de modules par l'intermédiaire des algèbres d'invariants pour l'action du groupe spécial linéaire sur les espaces de formes binaires de degré 8, qui sont de type fini. Suite aux travaux de Lercier et Ritzenthaler, les cas des corps de caractéristiques 3, 5 et 7 restaient ouverts. Pour ces derniers, les méthodes classiques de la caractéristique nulle sont inno- pérantes pour l'obtention de générateurs pour les algèbres d'invariants en jeu. Nous nous sommes donc contenté d'exhiber des invariants séparants en caractéristiques 3 et 7. En outre, nos résultats concernant la caractéristique 5 suggèrent l'inadéquation de cette approche pour ce cas. À partir de ces résultats, nous avons pu expliciter la stratification des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristiques 3 et 7 selon les groupes d'automorphismes et implémenté divers algorithmes, dont celui de Mestre, pour la reconstruction d'une courbe à partir de son module, ie la valeur de ses invariants. Pour cette phase de reconstruction, nous nous sommes notamment attaché aux questions arithmétiques, comme l'existence d'une obstruction à être un corps de définition pour le corps de module et, dans le cas contraire, à l'obtention d'un modèle de la courbe sur ce corps minimal. Enfin pour la caractéristique 2, notre approche est différente, dans la mesure où les courbes sont étudiées via leur modèle d'Artin-Schreier. Nous exhibons pour celles-ci des invariants bigradués qui dépendent de la structure arithmétique des points de ramifications des courbes. / The aim of this thesis is to provide an explicite description of the moduli spaces of genus 3 hyperelliptic curves in positive characteristic. Over a field of characteristic zero or odd, a parame- terization of these moduli spaces is given via the algebra of invariants of binary forms of degree 8 under the action of the special linear group. After the work of Lercier and Ritzenthaler, the case of fields of characteristic 3, 5 and 7 are still open. However, in these remaining case, the classical methods in characteristic zero do not work in order to provide generators for these algebra of invariants. Hence we provide only separating invariants in characteristic 3 and 7. Furthermore our results in characteristic 5 show this approach is not suitable. From these results, we describe the stratification of the moduli spaces of genus 3 hyperelliptic curves in characteristic 3 and 7 according to the automorphism groups of the curves and imple- ment algorithms to reconstruct a curve from its invariants. For this reconstruction stage, we paid attention to arithmetic issues, like the obstruction to be a field of definition for the field of moduli. Finally, in the characteristic 2 case, we use a different approach, given that the curves are defined by their Artin-Schreier models. The arithmetic structure of the ramification points of these curves stratify the moduli space in 5 cases and we define in each case invariants that characterize the isomorphism class of hyperelliptic curves.
12

Le problème de décompositions de points dans les variétés Jacobiennes / The point decomposition problem in Jacobian varieties

Wallet, Alexandre 26 November 2016 (has links)
Le problème du logarithme discret est une brique fondamentale de nombreux protocoles de communication sécurisée. Son instantiation sur les courbes elliptiques a permis, grâce à la petite taille des opérandes considérées, le déploiement de primitives asymétriques efficaces sur des systèmes embarqués. De nos jours, les cryptosystèmes utilisant des courbes elliptiques, aussi appelées courbes de genre 1, sont déjà intensément utilisés: il est donc impératif de savoir estimer précisément la robustesse de ces systèmes. L'existence d'attaques mathématiques permettant de transférer un problème de logarithme discret elliptique dans un autre type de courbe algébrique, et la nouvelle compétitivité des courbes de genre 2 imposent de ne pas se restreindre à la seule compréhension du problème sur les courbes elliptiques.Dans cette optique, le sujet de cette thèse se concentre sur les attaques algébriques sur les courbes de genre supérieur à 1. Les algorithmes de type calcul d'indice sont en général préférés pour ce genre d'attaque. Ces algorithmes se déroulent en deux phases: la première, appelée phase de récolte, dispose de nombreuses modélisations algébriques dépendant de la courbe ciblée. Le problème sous-jacent revient à savoir décomposer efficacement des points dans la variété Jacobienne de la courbe en somme d'autres points.On propose dans un premier temps une approche par crible pour la phase de récolte, s'adaptant à tous les types de courbes de genre plus grand que 1, et qui est expérimentalement plus efficaces que les méthodes de l'état de l'art. Cette méthode a l'avantage de proposer une implémentation immédiate, et évite les problèmes usuels de gestion des relations obtenues.Ensuite, on se concentre les variantes de calcul d'indice appelées attaques par décomposition, et ciblant les courbes définies sur des extensions de corps. Dans cette situation, la phase de récolte est effectuée par résolution de nombreux systèmes polynomiaux multivariés. On propose une nouvelle approche de modélisation de ces systèmes, en généralisant la notion de polynômes de sommation elliptique à tout les types de courbes algébriques. Pour cela on fait appel à la théorie de l'élimination, tandis que l'aspect pratique est gérée par des méthodes de bases de Gröbner.Enfin, on fournit des algorithmes d'amélioration du processus de résolution des systèmes lorsque la caractéristique du corps de base est paire. Par le biais d'une présentation théorique générale et en utilisant des méthodes de bases de Gröbner, on propose une analyse fine de l'impact de ces améliorations sur la complexité de la résolution. Cette analyse fine, ainsi qu'une implémentation dédiée, nous permettent d'attaquer une courbe de genre 2 satisfaisant des bornes de sécurité réaliste en pratique. / The discrete logarithm problem is a fundamental brick for several protocols for secured communications. Its instantiation over elliptic curves allows the deployment of efficient asymmetric primitives in embedded systems, because of the small size of the parameters considered. Nowadays, elliptic curves cryptosystems are already widely used: it is therefore crucial to precisely understand the hardness of such systems. Because of the existence of mathematical attacks enabling the transfer from an elliptic curve discrete logarithm problem to another algebraic curve, and the upcoming competitivity of genus 2 curves, it is mandatory to study the problem not only for elliptic curves, but for the other curves as well.In this way, this thesis focuses on the algebraic attacks over curves with genus greater than 1. The index calculus family of algorithms is in general preferred for this kind of attacks. Those algorithms run in two phases: the first, called harvesting phase, can be modelled by different algebraic approaches, depending in the targetted curve. The underlying problem amounts to knowing how to decompose efficiently points in the Jacobian variety of the curve into sums of other points.First, we propose a sieving approach to the harvesting, that can be adated to any type of curves with genus greater than 1, and which turns to be experimentally more efficient than state-of-the-art's methods. Moreover, our method allows a close-to-immediate implementation, and avoid complications coming from relations management.Our second focus is on a variant of index calculus called decomposition attack, targetting curves defined over field extensions. In this situation, harvesting is done by solving numerous multivariate polynomial systems. We propose a new approach to this modelling by generalizing the notion of elliptic summation polynomias to any type of algebraic curves. This uses elimination theory, and the computational aspect is handled by Gröbner bases methods.Third, we give algorithms to improve the solving process of the systems arising from a decomposition attacks when the characteristic of the base field is even. By mean of a general theoretical presentation, and using Gröbner bases methods, we give a sharp analysis of the impact of such improvement on the complexity of the resolution process. This sharp analysis together with a dedicated implementation allows us to attack a genus 2 curve satisfying realistic security parameters.
13

Une formule de Riemann-Roch équivariante pour les courbes

Borne, Niels 10 March 2000 (has links) (PDF)
Le cadre du travail présenté dans cette thèse est celui de la théorie équivariante des courbes, c'est-à-dire l'étude des courbes munies d'une action d'un groupe G, qu'on considère toujours fini. Le résultat essentiel est un théorème de Riemann-Roch à valeurs dans l'anneau des caractères du groupe considéré, et qui relève le théorème classique. Il est obtenu pour des G-faisceaux de rang quelconque grâce à l'introduction d'un groupe de diviseurs à coefficients équivariants qui permet en particulier de définir le déterminant et le degré d'un tel faisceau. On applique ce théorème au calcul de structures galoisiennes d'origine géométrique.
14

Familles de surfaces de Klein et fonctions rationnelles réel-étales

Lahaye-Hitier, Mathilde 16 December 2004 (has links) (PDF)
Cette thèse a pour objet la classification -- à isotopie près -- des fonctions rationnelles réel-étales de $\P^1_(\R)=\P^1$. Une fonction rationnelle réelle est une fraction de deux polynômes à coefficients réels, ou, de manière équivalente, un morphisme de $\P^1$ dans lui-même. Une telle fonction est dite réel-étale si elle n'a pas de ramification au-dessus des points réels. Comme nous le verrons plus bas, ces fonctions sont intéressantes à cause de leur lien avec les $M$-surfaces. Notre étude fait aussi le pendant de l'article [EG02] de A. Eremenko et A. Gabrielov dans lequel ils résolvent une conjecture de B. et M. Shapiro en dimension $1$. Pour cela, ils Ètudient les fonctions rationnelles sur $\P^1$ dont tous les points de ramification sont réels. Si on regardait les fonctions rationnelles réel-étales à homotopie près, on pourrait passer par des fonctions rationnelles ramifiées au-dessus des points réels. Cette classification est trop grossière. C'est pourquoi nous étudions plutôt les fonctions rationnelles réel-étales à isotopie près. Deux fonctions rationnelles réel-étales sont (\em isotopes) si l'on peut passer de l'une à l'autre par déformation continue dans l'ensemble des fonctions rationnelles réel-étales de mÍme degré. Pour définir de façon précise cette notion d'isotopie, une première partie de ma thèse développe la théorie des familles continues de surfaces de Klein. Pour cela, j'utilise le point de vue des espaces localement annelés. Ils permettent entre autre une définition plus naturelle des morphismes de surfaces de Klein que celle de la théorie classique. D'autre part, ils facilitent le travail en famille. Lors de cette étude, je démontre aussi un Théorème d'Existence de Riemann pour ces familles. Les principaux objets qui interviennent dans la classification sont les (\em arbres signés) associés à une fonction rationnelle réel-étale. Topologiquement, un endomorphisme de $\P^1$ est un revêtement ramifié du disque fermé par lui-même. Une fonction rationnelle $f$ sur $\P^1$ est réel-étale si et seulement si l'image réciproque $f^(-1)\bigl(\P^1(\R)\bigr)$ des points réels est la réunion disjointe de cercles topologiques dans $\C$. Ces cercles sont les arêtes de l'arbre. Les sommets de l'arbre sont les composantes connexes de $f^(-1)\bigl(\P^1\setminus\P^1(\R)\bigr)$. Un sommet $s$ est l'extrémité d'une arÍte $e$ si le cercle topologique $e$ est inclus dans l'adhérence de $s$ dans $\P^1$. De plus, l'arbre est pondéré : à chaque arête $e$ est associé le degré topologique de $f$ restreint à $e$. Une orientation sur $\P^1$ induit une orientation sur ses points réels. On ajoute alors au pied de l'arbre de $f$ un signe $"+"$ ou $"-"$ selon que $f$ préserve ou inverse respectivement l'orientation sur $\P^1(\R)$. Ceci donne l'(\em arbre signé) de $f$. Réciproquement, on montre que tout arbre signé peut être associé à une fonction rationnelle réel-étale.
15

Analyse de nouvelles primitives cryptographiques pour les schémas Diffie-Hellman

Kammerer, Jean-Gabriel 23 May 2013 (has links) (PDF)
L'objet de cette thèse est l'étude de diverses primitives cryptographiques utiles dans des protocoles Diffie-Hellman. Nous étudions tout d'abord les protocoles Diffie-Helmman sur des structures commutatives ou non. Nous en proposons une formulation unifiée et mettons en évidence les différents problèmes difficiles associés dans les deux contextes. La première partie est consacrée à l'étude de pseudo-paramétrisations de courbes algébriques en temps constant déterministe, avec application aux fonctions de hachage vers les courbes. Les propriétés des courbes algébriques en font une structure de choix pour l'instanciation de protocoles reposant sur le problème Diffie-Hellman. En particulier, ces protocoles utilisent des fonctions qui hachent directement un message vers la courbe. Nous proposons de nouvelles fonctions d'encodage vers les courbes elliptiques et pour de larges classes de fonctions hyperelliptiques. Nous montrons ensuite comment l'étude de la géométrie des tangentes aux points d'inflexion des courbes elliptiques permet d'unifier les fonctions proposées tant dans la littérature que dans cette thèse. Dans la troisième partie, nous nous intéressons à une nouvelle instanciation de l'échange Diffie-Hellman. Elle repose sur la difficulté de résoudre un problème de factorisation dans un anneau de polynômes non-commutatifs. Nous montrons comment un problème de décomposition Diffie-Hellman sur un groupe non-commutatif peut se ramener à un simple problème d'algèbre linéaire pourvu que les éléments du groupe admettent une représentation par des matrices. Bien qu'elle ne soit pas applicable directement au cas des polynômes tordus puisqu'ils n'ont pas d'inverse, nous profitons de l'existence d'une notion de divisibilité pour contourner cette difficulté. Finalement, nous montrons qu'il est possible de résoudre le problème Diffie-Hellman sur les polynômes tordus avec complexité polynomiale.
16

Approches biographiques de l'"Introduction à l'analyse des lignes courbes algébriques" de Gabriel Cramer / Biographical approaches to Gabriel Cramer's "Introduction à l'analyse des lignes courbes algébriques"

Joffredo, Thierry 01 December 2017 (has links)
La parution en 1750 de l'Introduction à l'analyse des lignes courbes algébriques, unique ouvrage publié de Gabriel Cramer, professeur de mathématiques à l'Académie de Genève, est un jalon important dans l'histoire de la géométrie des courbes et de l'algèbre. Il s'est passé près de dix années entre le moment où le Genevois a écrit les premières lignes de son traité des courbes, à l'automne 1740, et sa publication effective : il s'agit de l'œuvre d'une vie.Ce livre a une histoire, à la fois intellectuelle et matérielle, qui s'inscrit dans les contextes scientifiques, professionnels, académiques et sociaux dans lesquels évoluent son auteur puis ses lecteurs. De la genèse d'un texte manuscrit en devenir dont nous suivrons les évolutionsau cours du processus d'écriture et au gré des événements de la vie de son auteur, aux différentes lectures mathématiciennes et historiennes du texte publié qui en sont faites dans les quelque deux siècles qui ont suivi sa publication, je souhaite ici écrire, pour autant que cette expression ait un sens - ce que je m'attacherai à démontrer - une « biographie » de l'Introduction de Gabriel Cramer / The publication in 1750 of the Introduction à l'analyse des lignes courbes algébriques, the only published work by Gabriel Cramer, professor of mathematics at the Geneva Academy, is an important milestone in the history of geometry of curves and algebra. Almost ten years passed between the time when the Genevan wrote the first lines of his treatise on curves in the autumn of 1740 and its actual publication, making it a lifetime achievement.This book has a history, both intellectual and material, which takes place in the scientific, professional, academic and social contexts in which evolve its author and its readers. From the genesis of a handwritten text as a work in progress of which we will follow the evolutions during the process of writing and according to the events of its author's life, to the various mathematicians and historians' readings of the published text which are made in the two centuries following its publication, I would like to write here, insofar as this expression makes sense - which I shall endeavour to demonstrate - a « biography » of Gabriel Cramer's Introduction
17

Tropical intersection theory, and real inflection points of real algebraic curves / Théorie d’intersection tropicale, et points d’inflexion réels des courbes algébriques réelles

Garay-Lopez, Cristhian Emmanuel 29 September 2015 (has links)
Cette thèse est divisée en deux parties principales. D’abord on étudie des relations entre les théories d’intersection en géométrie tropicale et géométrie algébrique. Puis on étudie la question des possibilités pour la distribution de points d’inflexion réels associés à un système linéaire réel défini sur une courbe algébrique réelle lisse. Dans la première partie, nous présentons des nouveaux résultats reliant les théories d’intersection algébrique et tropicale dans une variété algébrique très affine définie sur un corps non-archimédien particulier (dit corps de Mal’cev-Neumann). Le résultat principale concerne l’intersection d’un cycle algébrique de dimension 1 dans une variété à tropicalisation simple avec un diviseur de Cartier. Dans la deuxième partie, nous obtenons d’abord une caractérisation de la répartition des points d’inflexion réels d’un système linéaire complet de degré d>1 sur une courbe elliptique réelle lisse. Puis nous étudions quelques courbes réelles non-hyperelliptiques canoniques de genre 4 dans l’espace projectif de dimension 3. Nous obtenons une formule qui relie le nombre de points de Weierstrass réels d’une telle courbe avec la caractéristique d’Euler-Poincaré d’un certain espace topologique. Finalement, en utilisant la technique du Patchworking (dû à O. Viro), on construit un exemple de courbe réelle, lisse, non-hyperelliptique de genre 4 ayant 30 points de Weierstrass réels. / This thesis is divided in two main parts. First, we study the relationships between intersection theories in tropical and algebraic geometry. Then, we study the question of the possibilities for the distribution of the real inflection points associated to a real linear system defined on a smooth real algebraic curve. In the first part, we present new results linking algebraic and tropical intersection theories over a very-affine algebraic variety defined over a particular non-Archimedean field (known as Mal’cev-Newmann field). The main result concerns the intersection of a one-dimensional algebraic cycle with a Cartier divisor in a variety with simple tropicalization. In the second part, we obtain first a characterization of the distribution of real inflection points associated to a real complete linear system of degree d>1 defined over a smooth real elliptic curve. Then we study some canonical, non-hyperelliptic real algebraic curves of genus 4 in a 3-dimensional projective space. We obtain a formule that relies the amount of real Weierstrass points of such a curve with the Euler-Poincaré characteristic of certain topological space. Finally, using O. Viro’s Patch-working technique, we construct an example of a smooth, non-hyperelliptic real algebraic curve of genus 4 having 30 real Weierstrass points.
18

Rigid isotopy classification of real quintic rational plane curves / Classification des courbes planes réelles de degré 5 à isotopie rigide

Jaramillo Puentes, Andrés 28 September 2017 (has links)
Afin d’étudier les classes d'isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP, nous associons à chaque quintique avec un point double réel marque une courbe trigonale dans la surface de Hirzebruch Sigma3 et le dessin reel nodal correspondant dans CP/(z mapsto bar{z}). Les dessins sont des versions réelles, proposées par S. Orevkov dans cite{Orevkov}, des dessins d'enfants de Grothendieck. Un dessin est un graphe contenu dans une surface topologique, muni d'une certaine structure supplémentaire. Dans cette thèse, nous étudions les propriétés combinatoires et les recompositions des dessins correspondants aux courbes trigonales nodales C subset Sigma dans les surfaces réglées réelles Sigma . Les dessins uninodaux sur une surface a bord quelconque et les dessins nodaux sur le disque peuvent être décomposés en blocs correspondant aux dessins cubiques sur le disque D2 , ce qui conduit a une classification des ces dessins. La classification des dessins considérés mène à une classification à isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP. / In order to study the rigid isotopy classes of nodal rational curves of degree $5$ in $\RPP$, we associate to every real rational quintic curve with a marked real nodal point a trigonal curve in the Hirzebruch surface $\Sigma_3$ and the corresponding nodal real dessin on~$\CP/(z\mapsto\bar{z})$. The dessins are real versions, proposed by S. Orevkov~\cite{Orevkov}, of Grothendieck's {\it dessins d'enfants}. The {\it dessins} are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves~$C\subset \Sigma$ in real ruled surfaces~$\Sigma$. Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk~$\mathbf{D}^2$, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in~$\RPP$.
19

Analyse de nouvelles primitives cryptographiques pour les schémas Diffie-Hellman / Analysis of new cryptographic primitives for Diffie-Hellman schemes

Kammerer, Jean-Gabriel 23 May 2013 (has links)
L'objet de cette thèse est l'étude de diverses primitives cryptographiques utiles dans des protocoles Diffie-Hellman. Nous étudions tout d'abord les protocoles Diffie-Helmman sur des structures commutatives ou non. Nous en proposons une formulation unifiée et mettons en évidence les différents problèmes difficiles associés dans les deux contextes. La première partie est consacrée à l'étude de pseudo-paramétrisations de courbes algébriques en temps constant déterministe, avec application aux fonctions de hachage vers les courbes. Les propriétés des courbes algébriques en font une structure de choix pour l'instanciation de protocoles reposant sur le problème Diffie-Hellman. En particulier, ces protocoles utilisent des fonctions qui hachent directement un message vers la courbe. Nous proposons de nouvelles fonctions d'encodage vers les courbes elliptiques et pour de larges classes de fonctions hyperelliptiques. Nous montrons ensuite comment l'étude de la géométrie des tangentes aux points d'inflexion des courbes elliptiques permet d'unifier les fonctions proposées tant dans la littérature que dans cette thèse. Dans la troisième partie, nous nous intéressons à une nouvelle instanciation de l'échange Diffie-Hellman. Elle repose sur la difficulté de résoudre un problème de factorisation dans un anneau de polynômes non-commutatifs. Nous montrons comment un problème de décomposition Diffie-Hellman sur un groupe non-commutatif peut se ramener à un simple problème d'algèbre linéaire pourvu que les éléments du groupe admettent une représentation par des matrices. Bien qu'elle ne soit pas applicable directement au cas des polynômes tordus puisqu'ils n'ont pas d'inverse, nous profitons de l'existence d'une notion de divisibilité pour contourner cette difficulté. Finalement, nous montrons qu'il est possible de résoudre le problème Diffie-Hellman sur les polynômes tordus avec complexité polynomiale. / In this thesis, we study several cryptographic primitives of use in Diffie-Hellman like protocols. We first study Diffie-Hellman protocols on commutative or noncommutative structures. We propose an unified wording of such protocols and bring out on which supposedly hard problem both constructions rely on. The first part is devoted to the study of pseudo-parameterization of algebraic curves in deterministic constant time, with application to hash function into curves. Algebraic curves are indeed particularly interesting for Diffie-Hellman like protocols. These protocols often use hash functions which directly hash into the curve. We propose new encoding functions toward elliptic curves and toward large classes of hyperelliptic curves. We then show how the study of the geometry of flex tangent of elliptic curves unifies the encoding functions as proposed in the litterature and in this thesis. In the third part, we are interested in a new instantiation of the Diffie-Hellman key exchange. It relies on the difficulty of factoring in a non-commutative polynomial ring. We show how to reduce a Diffie-Hellman decomposition problem over a noncommutative group to a simple linear algebra problem, provided that group elements can be represented by matrices. Although this is not directly relevant to the skew polynomial ring because they have no inverse, we use the divisibility to circumvent this difficulty. Finally, we show it's possible to solve the Diffie-Hellman problem on skew polynomials with polynomial complexity.
20

ENSEIGNEMENT ET APPRENTISSAGE DES EQUATIONS, INEQUATIONS ET FONCTIONS AU SECONDAIRE : ENTRE SYNTAXE ET SEMANTIQUE

Kouki, Rahim 29 November 2008 (has links) (PDF)
Dans ce travail de recherche, nous nous intéressons à une étude didactique des objets équation, inéquation et fonction en faisant référence à la théorie sémantique de la vérité introduite par Frege et Russell et développée par Tarski et Quine, en particulier les notions de phrase ouverte ; satisfaction d'une phrase ouverte par un élément ; quantification, qui permettent de mieux expliciter les notions d'égalité et d'inégalité d'une part, le statut des lettres d'autre part.<br />Notre recherche s'inscrit dans la continuité des travaux de recherche de Durand-Guerrier et nous soutenons la thèse selon laquelle la logique des prédicats est pertinente pour l'analyse des questions liées l'articulation des deux points de vue sémantique et syntaxique dans l'enseignement et l'apprentissage des équations, inéquations et fonctions au secondaire.<br />Pour compléter les éclairages apportés par la sémantique logique, nous avons conduit une étude historique circonscrite des relations entre ces concepts mathématiques. Nous avons ainsi croisé cette étude avec notre perspective logique en vue de repérer la dyade sémantique/ syntaxe au moment de la formation de ces concepts.<br />La question principale étudiée dans l'exploration didactique concerne la possibilité de repérer, dans le développement des concepts d'équation, d'inéquation et de fonction, des phénomènes liés à la dialectique sémantique / syntaxe. Pour cela, nous avons conduit une analyse des programmes et des manuels de l'enseignement secondaire tunisien ; soumis un questionnaire à des élèves du secondaire et des étudiants de classes préparatoires ; proposé une situation d'apprentissage à quelques élèves volontaires et réalisé quelques entretiens avec des enseignants. Nos travaux montrent un recul du point de vue sémantique dès que les techniques syntaxiques sont disponibles, et une quasi absence d'articulation entre syntaxe et sémantique.

Page generated in 0.0653 seconds