• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 21
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Real-time loop-mediated isothermal amplification assay for rapid detection of Rift Valley fever virus

Le Roux, C.A. (Chantel Anne) 22 October 2010 (has links)
Rift Valley fever (RVF) belongs to the group of viral haemorrhagic fevers (VHFs), most of which are zoonotic diseases causing outbreaks in animals and humans all over Africa. In the absence of haemorrhagic or specific organ manifestations, these diseases are clinically difficult to diagnose. Rapid laboratory confirmation of cases is therefore essential for timely execution of supportive treatment, appropriate case management, infection control, and tracing of contacts. Rift Valley fever virus (RVFV), a mosquito-borne pathogen, is responsible for high mortality rates and abortion in domestic ruminants, resulting in significant socio-economic losses. Furthermore, the virus is potentially infectious by aerosol, can replicate in a wide range of mosquito species and poses a bioweapon threat. The recent spread of the virus outside of the African continent, demonstrates its ability to move northwards to RVF free regions, e.g. to Europe and Northern America. Such fears fuel the international demand for reliable and validated diagnostic tools for rapid diagnosis of RVF. The aim of this study was to develop a rapid and accurate molecular tool for the detection of RVFV. A real-time loop-mediated isothermal amplification assay (LAMP) targeting the L segment of RVFV, was developed and evaluated. The assay proved to be highly specific and able to detect RVFV strains representing the genetic spectrum of the virus. Furthermore, the assay did not amplify the RNA of other genetically and antigenically related phleboviruses. The sensitivity of the assay was compared to that of a previously published TaqMan RTD-PCR protocol and found to be equal. Similarly, the assay demonstrated very high diagnostic sensitivity and specificity in various clinical human and animal specimens, collected during natural outbreaks of the disease in Africa. The detection of specific viral genome targets in positive clinical specimens was achieved in less than 30 minutes. As a highly accurate, rapid and very simple nucleic acid detection format, the RT-LAMP assay has the potential to be used in less well equipped laboratories in Africa. The assay format can be adapted to a portable device that can be utilized during RVF outbreaks in remote areas, and can be a valuable tool for differential diagnosis of VHFs. / Dissertation (MSc)--University of Pretoria, 2010. / Microbiology and Plant Pathology / unrestricted
12

MAVS is Essential for Regulation of Innate Immune Signaling during Rift Valley Fever Virus Infection

Ermler, Megan Elizabeth 21 February 2014 (has links)
No description available.
13

Structural studies of bunyavirus interferon antagonist proteins

Barski, Michał S. January 2016 (has links)
Bunyaviridae is one of the biggest known viral families, and includes many viruses of clinical and economic importance. The major virulence factor of most bunyaviruses is the non-structural protein (NSs). NSs is expressed early in infection and inhibits the innate immune response of the host by blocking several steps in the interferon induction and signalling pathways. Hence, NSs significantly contributes to the establishment of a successful viral infection and replication, persistent infection and the zoonotic capacity of bunyaviruses. Although functions and structures of many viral interferon antagonists are known, no structure of a bunyavirus NSs protein has been solved to date. This strongly limits our understanding of the role and the mechanism of interferon antagonism in this large virus family. In this work the first structure for a bunyavirus interferon antagonist, the core domain crystal structure of NSs from the Rift Valley fever virus (RVFV) is presented. RVFV is one of the most clinically significant members of the Bunyaviridae family, causing recurrent epidemics in Africa and Arabia, often featuring high-mortality haemorrhagic fevers. The structure shows a novel all-helical fold. The unique molecular packing of NSs in the crystal creates stable fibrillar networks, which could correspond to the characteristic fibrillation of NSs observed in vivo in the nuclei of RVFV infected cells. This first NSs structure might be a useful template for future structure-aided design of drugs that target the RVFV interferon antagonism. Attempts at characterising other bunyavirus NSs proteins of other genera were made, but were hampered by problems with obtaining sufficient amounts of soluble and folded protein. The approaches that proved unsuccessful for the solubilisation of these NSs proteins, however, should inform future experiments aimed at obtaining recombinant NSs for structural studies.
14

Cytoprotective effects of lithium on endothelial integrity and immune profiles induced by rift valley fever virus on huvec and raw 264.7 cells

Makola, Raymond Tshepiso January 2021 (has links)
Thesis (Ph.D. (Biochemistry)) -- University of Limpopo, 2021 / Introduction: Rift Valley fever virus (RVFV) is an arthropod-born RNA zoonotic virus causing Rift Valley fever (RVF) disease. RVFV is prevalent across sub-Saharan Africa and the Arabian Peninsula with no existing effective and approved antiviral remedies for humans or animals. RVFV has developed mechanisms to hide from immune recognition and induce anti-apoptosis processes to keep the infected host cells viable in an attempt to advance their viral progeny. RVFV is a single-stranded enveloped RNA genome virus composed of 3 segments; the L, M and S segments. The S segment is known to encode a non-structural protein (NSs) identified to be the main virulence factor promoting viral replication through immune suppression. RVFV elicits a set of diverse symptoms ranging from a febrile illness to more severe symptoms that usually culminate in life-threatening haemorrhagic fever with high fatality rates. Thus, this study was designed to investigate the efficacy of lithium as a potential drug for reduction of RVFV load and amelioration of imbalanced and dysregulated inflammatory responses observed in Huvec and Raw 264.7 macrophages infected with this virus. Methods and results: The MTT and Cyquant viability assays were used to demonstrate that lithium exerts no cytotoxic effects on non-infected Raw 264.7 macrophage cells but rather promotes cell growth and proliferation. Conversely, lithium was shown to significantly induce cell death in RVFV-infected Raw 264.7 macrophages. The Annexin-V/PI apoptosis assay was employed to demonstrate that RVFV induces apoptosis as a mode of cell death on Raw 264.7 cells. RVFV-induced apoptosis was accompanied by antagonistic Bax/Bcl-2 protein expression ratios. RVFV-infected cells treated with lithium resulted in higher levels of apoptosis signals compared to untreated RVFV-infected cells. Analysis of apoptosis stages using the real-time cell analyser (RTCA) also revealed that lithium induced early forms of apoptosis in RVFV-infected cells. Interestingly, induction of early apoptosis in these cells corresponds with lower viral load, probably as a result of early inhibition of viral progeny replication, as determined using viral titration assay. Immune response profiles elicited in Raw 264.7 macrophages infected with RVFV and treated with lithium were monitored. An ELISA assay was used to determine the effect of lithium on cytokines and chemokine production in this cell model. The results obtained showed that lithium significantly stimulated production of IFN-γ as RVFV-infected lithium-treated cells produced high levels of IFN-γ compared to lithium-free RVFV-infected control cells. Furthermore, in the same setting, the secondary pro-inflammatory cytokine, IL-6, and chemokine, RANTES, were stimulated by lithium 12 hrs post-infection (pi). Lithium was shown to significantly stimulate TNF-α production as early as 3 hrs pi. In addition to TNF-α expression, the expression of the regulatory cytokine, IL-10, was significantly stimulated by lithium with the highest expression peak at 12 hrs pi. As determined using the H2DCF-DA and DAF-2 DA florigenic assays, reduced production of the ROS and RNS was observed in RVFV-infected lithium-treated cells as opposed to untreated RVFV-infected controls. This was further supported by the Western blot assay results that showed low expression of the iNOS while upregulating expression of heme oxygenase and IκB in RVFV-infected lithium-treated cells. Results from immunocytochemistry and Western blot assays revealed that lithium inhibits NF-κB nuclear translocation in RVFV-infected cells compared to lithium-free RVFV-infected cells and 5 mg/ml LPS controls. This study hypothesises persistent and deregulated inflammation as the central phenomenon responsible for endothelial damage and haemorrhagic fever in RVFV pathogenesis. Supernatants were collected from RVFV-infected macrophage cells treated with lithium and their effects on the integrity of endothelial cells were evaluated. The xcelligence real-time cell analyser system (RTCA) and transwell assay that measure endothelial monolayer integrity were used to demonstrate that lithium protects endothelial cells from RVFV-induced cellular damage. Moreover, lithium was shown to upregulate expression of cytoplasmic molecules such as α and β-catenins involved in attaching the cadherin molecules to the actin cytoskeleton on the endothelial cell. Expression of α-catenins, talins, zyxins and vinculins that attach integrins to the extracellular matrix and to other cells were observed to be upregulated by supernatants from RVFV-infected Raw 264.7 macrophage cells treated with lithium. Endothelial cell monolayer exposed to supernatants from RVFV-infected lithium-treated Raw 264.7 cells displayed upregulated expression of transmembrane molecules such as E-cadherins and N-cadherins. However, expression of VE-cadherins was observed to be lower compared to those treated with supernatants from lithium-free RVFV-infected Raw 264.7 control cells. Conclusion: These findings propose that lithium limits viral replication and viral load in macrophages by inducing early apoptosis in RVFV-infected cells. Since lithium was shown to promote Raw 264.7 macrophage proliferation, it is thus suggested that the use of lithium as an RVFV antiviral drug is less likely to elicit leukocytopenia. Lithium seems to regulate excessive inflammation in RVFV-infected Raw 264.7 macrophages by modulating the NF-kB signalling pathway. The endothelial integrity observed in the permeability assays has been supported by the expression of the molecules involved in keeping the cell to cell adhesion intact. This study links endothelial integrity patterns exerted by lithium with lowered production of inflammatory mediators such as ROS and RNS as these molecules are involved in destabilisation of cell junctions. Results from this study point towards the use of lithium as a potential treatment for RVFV infections by limiting viral replication, restricting viral spread and restoring the inflammation-regulating machinery. Key words. Lithium, Rift Valley fever virus, NF-kB, endothelial integrity, inflammation and apoptosis / Poliomyelitis Research foundation and National Research Foundation
15

New Understanding of the Epidemiology of Rift Valley Fever Virus in Kenya

LaBeaud, Angelle Desiree 13 May 2009 (has links)
No description available.
16

Understanding Host-Pathogen Interactions of Rift Valley Fever Virus That Contribute to Viral Replication

Bracci, Nicole Rose 11 April 2022 (has links)
Rift Valley fever virus (RVFV) is a negative-sense RNA virus that is classified as an overlap select agent by the USDA and the HHS. It was first discovered in the Rift Valley of Kenya in the early 1930s. RVFV is an arbovirus that is transmitted by mosquitoes and infects ruminants and humans. RVFV in humans causes an acute self-limiting febrile illness but in a small percentage of cases, a severe version is noted by ocular disease, hepatitis, hemorrhagic fever, and death. In ruminants, the disease is similar with young livestock being the most susceptible. RVFV is also known to cause "abortion storms" where infected pregnant ruminants abort their fetuses with a near 100% fatality rate. Viruses are obligate intracellular parasites utilizing host-factors to replicate. This study identified three host-protein interactors of the viral Gn and L proteins that aid in viral replication. UBR4 was determined to be an interactor of Gn via immunoprecipitation followed by either LC/MS/MS or western blot analysis. Its inhibition via siRNA or CRISPR-Cas9 knockout showed a reduction of viral titers and viral RNA production. It was determined that UBR4 specifically affects viral RNA production and not entry or egress. Conversely, CK1α and PP1α were identified as binding partners of the L protein using similar methods. CK1α, a kinase, and PP1α, a phosphatase, were chosen for further verification due to data demonstrating the L protein is phosphorylated on at least one serine residue, in addition to PP1α already being shown to impact RVFV replication. Inhibition of CK1 and PP1 via small molecule inhibitors, D4476 and 1E7-03, respectively, showed a decrease in viral titers and RNA production. Strand-specific RT-qPCR demonstrates that CK1 and PP1 impact genomic replication. Upon treatment with D4476 a decrease in L protein phosphorylation was observed. Additionally, it has already been shown that treatment with 1E7-03 increases L protein phosphorylation. These data indicate that CK1 and PP1 modulate L protein phosphorylation, contributing to changes in RVFV replication. This study identifies three host-proteins that affect viral replication, which could be used as a foundation for host-based therapeutic and vaccine development. / Doctor of Philosophy / Rift Valley fever virus (RVFV) is a major biological threat due to its ability to infect both livestock and humans and be passed by mosquito bite. RVFV was first discovered in Africa in the early 1930s. To date, there is no approved therapeutic or vaccine. RVFV usually causes very mild disease but in a small percentage of cases, it progresses to include liver disease, vision loss, swelling of the brain, bleeding, and death. A virus itself is not alive; it needs a living host in order to replicate. To do this, it utilizes things naturally occurring inside the host. The purpose of this study is to identify host-factors that the virus uses in order to efficiently make more viruses. The first viral protein of interest is the glycoprotein, Gn, which is important for viral entry and assembly of the viral particles. It was determined that the host-protein UBR4 is an interactor of Gn and that the inhibition of UBR4 decreases the amount of infectious virus being produced. Similarly, the host-proteins, CK1α and PP1α, were found to be interactors of the viral L protein. The L protein is responsible for synthesizing the building blocks of the virus. It was determined that when CK1 and PP1 are inhibited, the L protein is less efficient at making these building blocks. Understanding the host-factors the virus utilizes is important to the basic understanding of how RVFV infects the host and the development of therapeutics to combat an outbreak.
17

Epidemiology of West Nile Virus in Lebanon / Epidémiologie du virus du Nil occidental au Liban

Zakhia, Renée 11 October 2017 (has links)
Le Virus du Nil Occidental (VNO) et le Virus de la Fièvre de la Vallée du Rift (VFVR) sont deux arbovirus transmis par le moustique Culex pipiens comprenant deux biotypes: pipiens et molestus. Au cours de ce projet, nous avons évalué la circulation du VNO au Liban dans des populations de moustiques, des humains, des chevaux et des poulets. Nous avons aussi évalué la compétence vectorielle des populations locales de Cx. pipiens à transmettre le VNO et le VFVR.Des moustiques ont été récoltés et testés pour la présence d’un gène spécifique du VNO. En plus, des sérums humains, de chevaux et de poulets ont été analysés pour rechercher des anticorps spécifiques par ELISA puis confirmés par neutralisation. En outre, des spécimens de Cx. pipiens ont été infectés avec la lignée 1 du VNO ou la souche de VFVR Clone 13. Ensuite, les taux d’infection, de dissémination et de transmission ont été déterminés à différents jours après infection des moustiques. La compétence vectorielle a été comparée entre les différents biotypes.Les résultats entomologiques ont révélé que Cx. pipiens est dominant (87.2%). Tous les moustiques analysés étaient négatifs pour le VNO. Les taux de séroprévalence étaient de 1.01% et 1.98% parmi les humains et les chevaux respectivement. De plus, Cx. pipiens s’est révélé bien plus compétent pour transmettre le VNO que le VFVR. Le biotype molestus est capable de transmettre le VNO plus tôt que celui de pipiens. Cette étude présente des preuves sur une faible circulation du VNO au Liban. Cx. pipiens s’est révélé compétent pour assurer cette transmission. Ainsi, il est essentiel d'établir des programmes de surveillance pour prévenir les éventuelles épidémies. / West Nile virus (WNV) and Rift Valley Fever virus (RVFV) are two emerging arboviruses that have never been reported in Lebanon. They can be transmitted by Culex pipiens mosquito species including two biotypes: pipiens and molestus. During this project, we assessed the circulation of WNV among mosquitoes, human, horse and chicken populations in Lebanon. Moreover, we evaluated, under experimental conditions, the capacity of local Cx. pipiens biotypes to transmit both viruses.Adult mosquitoes were collected, identified and tested to detect WNV RNA. Besides, human, horse and chicken blood samples were collected and screened for WNV antibodies using an in-house ELISA and then confirmed by neutralization assay. Moreover, local Cx. pipiens specimens were experimentally infected with WNV lineage 1 or RVFV Clone 13 strain. The viral infection, dissemination and transmission were then estimated at different days post infection.The vector competence was compared between Cx. pipiens biotypes.Entomological results revealed that 87.2% of collected adult mosquitoes were Cx. pipiens. Screened mosquitoes were negative for WNV. Seroprevalence rates were 1.01% and 1.98% among humans and horses respectively. Besides, local Cx. pipiens were highly competent for WNV transmission and to a lesser extent to RVFV. The molestus biotype was able to transmit WNV earlier than pipiens biotype.The present study provides new evidence of a low circulation of WNV among human and horses in Lebanon. Cx. pipiens is the suspected vector and is experimentally competent to ensure transmission. Therefore, there is a need to establish surveillance program to predict and prevent potential outbreaks.
18

Rift Valley fever : consequences of virus-host interactions

Baudin, Maria January 2016 (has links)
Rift Valley fever virus (RVFV) is a mosquito-borne virus which has the ability to infect a large variety of animals including humans in Africa and Arabian Peninsula. The abortion rate among these animals are close to 100%, and young animals develop severe disease which often are lethal. In humans, Rift Valley fever (RVF) presents in most cases as a mild illness with influenza-like symptoms. However, in about 8% of the cases it progresses into a more severe disease with a high case fatality rate. Since there is such a high abortion rate among infected animals, a link between human miscarriage and RVFV has been suggested, but never proven. We could in paper I for the first time show an association between acute RVFV infection and miscarriage in humans. We observed an increase in pregnant women arriving at the Port Sudan Hospital with fever of unknown origin, and several of the patients experienced miscarriage. When we analysed their blood samples for several viral diseases we found that many had an acute RVFV infection and of these, 54% experienced a miscarriage. The odds of having a miscarriage was 7 times higher for RVFV patients compared to the RVFV negative women of which only 12% miscarried. These results indicated that RVFV infection could be a contributing factor to miscarriage. RVFV is an enveloped virus containing the viral glycoproteins n and c (Gn and Gc respectively), where Gn most likely is responsible for the initial cellular contact. The protein DC-SIGN on dendritic cells and the glycosaminoglycan heparan sulfate has been suggested as cellular receptors for RVFV, however other mechanisms are probably also involved in binding and entry. Charge is a driving force for molecular interaction and has been shown to be important for cellular attachment of several viruses, and in paper II we could show that when the charge around the cells was altered, the infection was affected. We also showed that Gn most likely has a positive charge at a physiological pH. When we added negatively charged molecules to the viral particles before infection, we observed a decreased infection efficiency, which we also observed after removal of carbohydrate structures from the cell surface. Our results suggested that the cellular interaction partner for initial attachment is a negatively charged carbohydrate. Further investigations into the mechanisms of RVFV cellular interactions has to be undertaken in order to understand, and ultimately prevent, infection and disease. There is currently no vaccine approved for human use and no specific treatments for RVF, so there is a great need for developing safe effective drugs targeting this virus. We designed a whole-cell based high-throughput screen (HTS) assay which we used to screen libraries of small molecular compounds for anti-RVFV properties. After dose-response and toxicity analysis of the initial hits, we identified six safe and effective inhibitors of RVFV infection that with further testing could become drug candidates for treatment of RVF. This study demonstrated the application of HTS using a whole-cell virus replication reporter gene assay as an effective method to identify novel compounds with potential antiviral activity against RVFV.
19

Sensitivity and specificity of rRT-PCR, histopathology, and immunohistochemistry for the detection of rift valley fever virus in naturally-infected cattle and sheep

Odendaal, Lieza January 2014 (has links)
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by a virus of the family Bunyaviridae, genus Phlebovirus. It is responsible for extensive outbreaks of disease in livestock in Africa with significant mortality and economic impact. Virus neutralization is considered the gold standard for confirming Rift Valley fever virus (RVFV) infection but the procedure is time consuming and expensive. Real-time reverse transcription-polymerase chain reaction (rRT-PCR), histopathology, and immunohistochemistry (IHC) are the diagnostic methods most often used in South Africa to confirm or exclude a diagnosis of RVF in necropsied animals. Validated estimates of diagnostic accuracy of these tests, in naturally infected livestock, however, have not been published. The objective of this study was to estimate the diagnostic sensitivity and specificity of rRT-PCR, histopathology, and IHC using Bayesian latent class methods in the absence of a gold standard. A secondary objective was to estimate stratum-specific values based on species, age, degree of specimen autolysis, and the presence/absence of tissue pigments. The Sensitivity (Se) and Specificity (Sp) of qRT-PCR were 97.4% (95% credibility interval (CI): 95.2% - 98.8%) and 71.7% (95% CI: 65% - 77.9%) respectively. The extraordinary analytical sensitivity of PCR makes this test very susceptible to false positive reactions, and thus reduced specificity. This is more likely during large-scale epidemics due to crosscontamination of specimens at necropsy facilities or testing laboratories. The Se and Sp of histopathology were 94.6% (95% CI: 91% - 97.2%) and 92.3% (95% CI: 87.6% - 95.8%) respectively. Single cases of RVF could be confused with acute poisoning with plants, bacterial septicaemias, and viral diseases such as infectious bovine rhinotracheitis and Wesselsbron disease. Most of these conditions, however, can be excluded using histological examination of the liver, special stains, bacterial culture, and toxicological or serological investigations. The Se and Sp of IHC were 97.6% (95% CI: 93.9% - 99.8%) and 99.4% (95% CI: 96.9% - 100%) respectively. Immunohistochemistry is highly specific because characteristic positive immunolabelling of the cytoplasm of hepatocytes can be correlated with the presence of hepatocellular injury typical for RVFV infection. False negative results are sometimes obtained with IHC because of reader error or loss of the antigenic epitopes due to advanced autolysis. Scant positive immunolabelling might be missed or viral proteins might be absent from sections of liver with advanced hepatocellular damage. The stratified analysis suggested differences in test accuracy in foetuses and severely autolysed specimens. The Sp of histopathology in foetuses (83.0%) was 9.3% lower than the value obtained for the sample population (92.3%). Lesions in some foetuses are more subtle and the typical eosinophilic intranuclear inclusions are often difficult to detect. In severely autolysed specimens, the Se of IHC decreased by 16.1% and the Sp of rRT-PCR by 17.4%. There is no plausible biological explanation for this decrease in the Sp of rRTPCR since the RNA of RVFV is resistant to degradation in autolysed tissues. Conversely, the antibody used to detect RVFV using IHC detects epitopes raised against nucleoproteins of the virus and it is possible that viral proteins become too widely dispersed and/or degraded in autolysed tissues to detect by light microscopy. It is possible that the marked decrease in Se of histopathology and IHC in severely autolysed specimens caused an apparent decrease in Sp of rRT-PCR, due to the latent class method. In conclusion, the high estimated Sp (99.4%) of IHC and the low Sp of rRT-PCR (71.3%) suggests that the definitive diagnosis or exclusion of RVF should not rely on a single PCR test and that IHC would be an effective confirmatory test for rRT-PCR positive field cases necropsied during an epidemic. Immunohistochemistry results from severely autolysed specimens, however, should be interpreted with caution and aborted foetuses in areas endemic for RVF should be screened using a variety of tests. The diagnostic Se and Sp of histopathology was much higher than expected confirming the value of routine post mortem examinations and histopathology of liver specimens. The most feasible RVF testing option in areas that do not have suitably equipped PCR laboratories, and where disease is often not detected in livestock until after human cases have been diagnosed, would be routine histopathology screening with IHC confirmation. Key Words: Rift Valley fever; Rift Valley fever virus; Bayesian; latent-class model; real-time reverse transcription-polymerase chain reaction; immunohistochemistry; histopathology; diagnosis; sensitivity; specificity. / Dissertation (MSc)--University of Pretoria, 2014. / gm2014 / Paraclinical Sciences / unrestricted
20

Investigating the role of acetylation of LC3-family proteins in regulating autophagy

Ali, Mohamed 06 1900 (has links)
L'autophagie maintient l'homéostasie cellulaire en dégradant les composants cellulaires. Chez l'humain, les protéines LC3 jouent un rôle central dans l'autophagie en interagissant avec d'autres facteurs contenant des régions d'interaction LC3 (LIR). Cette thèse porte sur le rôle de différents facteurs contenant des LIR, tels que le facteur nucléaire DOR et la protéine NSs du virus de la fièvre de la vallée du Rift (VFVR). Les protéines LC3 sont principalement présentes dans le noyau des cellules au repos normales, et leur passage au cytosol en réponse au stress nécessite une interaction avec DOR. Récemment, il a été démontré que cette interaction entre DOR et LC3B dépend de la désacétylation de deux résidus lysine conservés (K49/K51 de LC3A et K46/K48 de GABARAP). Cependant, les détails mécanistiques du rôle des résidus lysine individuels dans le transfert d'autres protéines LC3 demeurent inconnus. De plus, la caractérisation de l'interaction NSs-LC3 ainsi que son impact sur l'autophagie lors de l'infection par le RVFV demeurent évasives. Par conséquent, l'objectif de ces études est d'investiguer les différences structurelles et fonctionnelles des protéines humaines LC3 à différents stades de l'autophagie via leur interaction avec DOR et NSs. Nos études biophysiques et structurales ont permis d’identifier des éléments clés déterminant la spécificité de la région d'interaction LC3 de DOR (DORLIR) pour GABARAP. Nos études structurales ont défini une conformation en feuillet  chez DORLIR lorsqu'elle est en complexe avec GABARAP, ce qui joue un rôle important dans l'établissement de cette spécificité. Les études structurales ont également montré que l'acétylation de la deuxième Lys de GABARAP ou LC3A perturbe des interactions clés du W35 de DORLIR, ce qui conduit à une diminution de l'affinité qui est cohérente avec nos résultats ITC. Ces résultats ont été confirmés grâce à des expériences cellulaires en utilisant des substitutions K-en-Q pour imiter l'acétylation des Lys. En cellules, les substitutions K-en-Q à la deuxième Lys ont entravé le transfert cytoplasmique de GABARAP et de LC3A, ainsi que leur colocalisation avec DOR, tandis que les substitutions K-en-Q à la première Lys se comportent comme des protéines de type sauvage. Dans l'ensemble, la désacétylation de la deuxième Lys conservée est cruciale pour le transfert cytoplasmique de GABARAP et LC3A lors de l'autophagie, ce qui diffère de ce qui a été observé auparavant avec LC3B, où la désacétylation des deux Lys était nécessaire. Cette étude fournit également des informations sur les interactions entre la protéine NSs du VFVR et les protéines LC3, ainsi que l'impact de NSs sur l'autophagie lors de l'infection par le VFVR. Nous avons identifié quatre motifs potentiels d'interaction LC3 (NSs1-4) dans la protéine NSs, et des études d’ITC ont démontré que NSs4 interagit avec une affinité sous micromolaire-micromolaire avec les protéines LC3 humaines. De plus, nous avons confirmé que les protéines LC3 interagissent avec NSs dans les cellules, et que chez les cellules infectées par le RVFV, LC3A colocalise avec NSs. Dans l'ensemble, les résultats indiquent que la protéine NSs joue un rôle clé dans la modification de l'autophagie lors des infections par le VFVR. / Autophagy maintains cellular homeostasis through catabolism of cellular components including organelles, proteins, and pathogens. In humans, the six LC3 (Microtubule-associated protein 1 light chain 3) protein (LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in autophagy through interactions with other factors that contain LC3-interacting regions (LIRs). This study focuses on the role of different factors that contain LIRs such as the nuclear factor DOR and the NSs protein from the RVFV. LC3 proteins are predominantly present in the nucleus of normal resting cells and their shuttling to the cytosol in response to stress requires interaction with DOR. Recently, this interaction between DOR and LC3B was shown to depend on the deacetylation of two conserved Lys residues (K49/K51in LC3 subfamily proteins and K46/K48 in GABARAP subfamily proteins). However, the mechanistic details of the role of the individual Lys residues in the shuttling other LC3 proteins is unknown. In addition, the characterization of NSs-LC3 interaction as well as its impact on RVFV (Rift Valley fever virus) infection on autophagy remains elusive. Therefore, the goal of these studies is to investigate the structural and the functional differences of the six human LC3 proteins in different stages of autophagy through their interaction with DOR and NSs. Our biophysical and structural studies identified key elements determining the specificity of the LIR from DOR (DORLIR) for the GABARAP subfamily. Our structural studies defined a -sheet conformation in DORLIR when complexed with GABARAP, which is important role for establishing this specificity. ITC studies with acetylated versions of LC3A and GABARAP demonstrated that acetylation of the second Lys significantly decreases binding to the DORLIR whereas acetylation at the first Lys has little to no effect. Our structural studies also demonstrate that acetylation at the second Lys of either GABARAP or LC3A disrupts key interactions between W35 of the DORLIR, which leads to the decreased affinity. The in vitro results were verified in cellular experiments using K-to-Q substitutions to mimic Lys acetylation. In cells, K-to-Q substitutions at the second Lys impaired the cytoplasmic shuttling of both GABARAP and LC3A from the nucleus as well as their colocalization with DOR, whereas K-to-Q substitutions at the first Lys behaved like wild-type proteins. Taken together, the deacetylation of the second conserved Lys is critical for the cytoplasmic shuttling of GABARAP and LC3A during autophagy, which is in contrast to what was observed with LC3B where deacetylation of both Lys was required. This study also provides insights into interactions between the NSs protein of RVFV and LC3 proteins and the impact of NSs on autophagy during RVFV infection. We identified four potential LIR motifs (NSs1-4) in the NSs protein and ITC studies demonstrated that NSs4 interacts with submicromolar-micromolar affinity with the human LC3 proteins. In addition, we confirmed that LC3 proteins interact with NSs in cells and that in RVFV infected cell LC3A colocalizes with NSs. Taken together, the results indicate that the NSs protein plays a key role in altering autophagy during RVFV infections.

Page generated in 0.0995 seconds