• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 13
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transferência de calor e massa no escoamento bifásico em torno de aerofólios equipados com sistemas de antigelo aeronáuticos. / Heat and mass transfer in two-phase flow around airfoils with aeronautical anti-ice systems.

Silva, Guilherme Araújo Lima da 02 February 2009 (has links)
Há a necessidade de prevenir formação de gelo nas asas e nos estabilizadores de aeronaves, pois as formas de gelo podem causar a degradação do desempenho aerodinâmico, o aumento de peso, bem como dificuldades de controle e manobra que, em casos críticos, leva a uma diminuição da margem de segurança operacional. Quando as aeronaves atravessam nuvens com gotículas de água sub-resfriadas, ou seja, em equilíbrio metaestável, o crescimento de gelo ocorre nas superfícies não protegidas. Usualmente, os sistemas antigelo térmicos de aerofólios são projetados, desenvolvidos e certificados com o auxílio de programas de simulação numérica. O presente trabalho visa desenvolver e implementar um modelo matemático para prever a transferência de calor e massa no escoamento bidimensional bifásico em torno de aerofólios de uso aeronáuticos, equipados com sistema de antigelo térmico operando em regime permanente. Em condições de formação de gelo, é necessário aquecer o bordo de ataque e controlar a temperatura da região protegida para que não ocorra formação de gelo. O sistema de aquecimento compensa os efeitos do resfriamento imposto principalmente pelos mecanismos acoplados de evaporação e transferência de calor por convecção, que são causados pelo escoamento do ar carregado de gotículas sub-resfriadas e pelo escoamento da água líquida residual. O modelo deverá estimar a distribuição de temperaturas de superfície e o coeficiente de transferência de calor com precisão ao uso em aplicações aeronáuticas. O presente trabalho implementou novos submodelos para: 1) estimar a molhabilidade da superfície do aerofólio por meio de um modelo matemático para caracterizar o escoamento da água líquida residual na padrão de filme e de filetes; 2) avaliar o comportamento dinâmico e térmico da camada-limite laminar e turbulenta por meio de análises integral e diferencial, que considera efeitos do gradiente de pressão, da transição laminar-turbulenta, da transpiração e da não uniformidade de temperatura da superfície e 3) estimar o início e o término da região de transição laminar-turbulenta. O presente trabalho seguiu um processo de desenvolvimento de código numérico que: verificou os resultados de cada submodelo separadamente para depois implementados no modelo do antigelo; validou os resultados da simulação de desempenho do sistema antigelo com os novos submodelos implementados. Os resultados obtidos foram considerados satisfatórios para o modelo do antigelo que utilizou os submodelos de ruptura de filme e formação de filetes pelo critério da Energia Mecânica Total Mínima, de camada-limite diferencial compressível e de previsão da transição laminar-turbulenta por correlações algébricas, que consideraram efeitos do gradiente de pressão e do nível de turbulência ao longe. / It is required to prevent ice accretion on wings and horizontal stabilizers because it may cause aerodynamic performance degradation, weight increase, flight control difficulties and, in critical cases, may lead to operational safety margins reduction. When aircraft flies through clouds containnig supercooled water droplets, which are in metastable equilibrium, ice will form in all non-protected surfaces. Usually, anti-ice protection systems are designed, developed and certified with a support from a numerical tool. The present describes the development and implementation of a mathematical model for prediction of heat and mass transfer in two-phase flow around airfoils, which are equipped with thermal anti-ice system and operating in steady state regime. Under icing conditions, it is necessary to heat and control the temperature of the airfoil surface at leading edge region to prevent ice formation. The heating system balances the evaporative cooling effects, which are caused by the coupled heat and mass convection transfer, imposed by the air flow loaded with supercooled water droplets and the runback water flow around the airfoil. The present work implemented submodels to: 1) estimate airfoil surface wetness factor by adopting a liquid water film flow model as well as a rivulet formation and flow model; 2) evaluate laminar and turbulent boundary layers with pressure gradient and laminar-turbulent transition over nonisothermal and permeable airfoil surface by implementing differential boundary layer analysis and 3) predict the onset position and length of laminar-turbulent transition region. The present paper followed a validation and verification process during the numerical code development. All sub-models results were verified separately against experimental data before their inclusion in anti-ice model.The results of anti-ice model with selected submodels were validated against reference cases. The results were considered suficiently accurate when solving the film breakdown and rivulets formation by total mechanical energy method, compressible boundary layer by differential analysis and laminar-turbulent transition prediction by algebraic correlations, which considered pressure gradient and freestream turbulence level.
12

Transferência de calor e massa no escoamento bifásico em torno de aerofólios equipados com sistemas de antigelo aeronáuticos. / Heat and mass transfer in two-phase flow around airfoils with aeronautical anti-ice systems.

Guilherme Araújo Lima da Silva 02 February 2009 (has links)
Há a necessidade de prevenir formação de gelo nas asas e nos estabilizadores de aeronaves, pois as formas de gelo podem causar a degradação do desempenho aerodinâmico, o aumento de peso, bem como dificuldades de controle e manobra que, em casos críticos, leva a uma diminuição da margem de segurança operacional. Quando as aeronaves atravessam nuvens com gotículas de água sub-resfriadas, ou seja, em equilíbrio metaestável, o crescimento de gelo ocorre nas superfícies não protegidas. Usualmente, os sistemas antigelo térmicos de aerofólios são projetados, desenvolvidos e certificados com o auxílio de programas de simulação numérica. O presente trabalho visa desenvolver e implementar um modelo matemático para prever a transferência de calor e massa no escoamento bidimensional bifásico em torno de aerofólios de uso aeronáuticos, equipados com sistema de antigelo térmico operando em regime permanente. Em condições de formação de gelo, é necessário aquecer o bordo de ataque e controlar a temperatura da região protegida para que não ocorra formação de gelo. O sistema de aquecimento compensa os efeitos do resfriamento imposto principalmente pelos mecanismos acoplados de evaporação e transferência de calor por convecção, que são causados pelo escoamento do ar carregado de gotículas sub-resfriadas e pelo escoamento da água líquida residual. O modelo deverá estimar a distribuição de temperaturas de superfície e o coeficiente de transferência de calor com precisão ao uso em aplicações aeronáuticas. O presente trabalho implementou novos submodelos para: 1) estimar a molhabilidade da superfície do aerofólio por meio de um modelo matemático para caracterizar o escoamento da água líquida residual na padrão de filme e de filetes; 2) avaliar o comportamento dinâmico e térmico da camada-limite laminar e turbulenta por meio de análises integral e diferencial, que considera efeitos do gradiente de pressão, da transição laminar-turbulenta, da transpiração e da não uniformidade de temperatura da superfície e 3) estimar o início e o término da região de transição laminar-turbulenta. O presente trabalho seguiu um processo de desenvolvimento de código numérico que: verificou os resultados de cada submodelo separadamente para depois implementados no modelo do antigelo; validou os resultados da simulação de desempenho do sistema antigelo com os novos submodelos implementados. Os resultados obtidos foram considerados satisfatórios para o modelo do antigelo que utilizou os submodelos de ruptura de filme e formação de filetes pelo critério da Energia Mecânica Total Mínima, de camada-limite diferencial compressível e de previsão da transição laminar-turbulenta por correlações algébricas, que consideraram efeitos do gradiente de pressão e do nível de turbulência ao longe. / It is required to prevent ice accretion on wings and horizontal stabilizers because it may cause aerodynamic performance degradation, weight increase, flight control difficulties and, in critical cases, may lead to operational safety margins reduction. When aircraft flies through clouds containnig supercooled water droplets, which are in metastable equilibrium, ice will form in all non-protected surfaces. Usually, anti-ice protection systems are designed, developed and certified with a support from a numerical tool. The present describes the development and implementation of a mathematical model for prediction of heat and mass transfer in two-phase flow around airfoils, which are equipped with thermal anti-ice system and operating in steady state regime. Under icing conditions, it is necessary to heat and control the temperature of the airfoil surface at leading edge region to prevent ice formation. The heating system balances the evaporative cooling effects, which are caused by the coupled heat and mass convection transfer, imposed by the air flow loaded with supercooled water droplets and the runback water flow around the airfoil. The present work implemented submodels to: 1) estimate airfoil surface wetness factor by adopting a liquid water film flow model as well as a rivulet formation and flow model; 2) evaluate laminar and turbulent boundary layers with pressure gradient and laminar-turbulent transition over nonisothermal and permeable airfoil surface by implementing differential boundary layer analysis and 3) predict the onset position and length of laminar-turbulent transition region. The present paper followed a validation and verification process during the numerical code development. All sub-models results were verified separately against experimental data before their inclusion in anti-ice model.The results of anti-ice model with selected submodels were validated against reference cases. The results were considered suficiently accurate when solving the film breakdown and rivulets formation by total mechanical energy method, compressible boundary layer by differential analysis and laminar-turbulent transition prediction by algebraic correlations, which considered pressure gradient and freestream turbulence level.
13

Evolution and stability of falling liquid films with thermocapillary effects / Evolution et stabilité de films liquides tombants avec effets thermocapillaires

Scheid, Benoît 15 March 2004 (has links)
This thesis deals with the dynamics of a thin liquid film falling down a heated plate. The heating yields surface tension gradients that induce thermocapillary stresses on the free surface, thus affecting the stability and the evolution of the film. Accounting for the coherence of the flow due to viscosity, two main approaches that reduce the dimensionality of the original problem are usually considered depending on the flow rate (as measured by the Reynolds number): the `long wave' asymptotic expansion for small Reynolds numbers and the `integral boundary layer' approximation for moderate Reynolds numbers. The former suffers from singularities and the latter from incorrectness of the instability threshold for the occurrence of hydrodynamic waves. Thus, the aim of this thesis is twofold: in a first part, we define quantitatively the validity of the `long wave' evolution equation (Benney equation) for the film thickness h including the thermocapillary effect; and in a second part, we improve the `integral boundary layer' approach by combining a gradient expansion to a weighted residual method. <p>In the first part, we further investigate the Benney equation in its validity domain in the case of periodically inhomogeneous heating in the streamwise direction. It induces steady-state deformations of the free surface with increased transfer rate in regions where the film is thinner, and also in average. The inhomogeneities of the heating also modify the nature of travelling wave solutions at moderate temperature gradients and allows for suppressing wave motion at larger ones.<p>Moreover, large temperature gradients (for instance positive ones) in the streamwise direction produce large local film thickening that may in turn become unstable with respect to transverse disturbances such that the flow may organize in rivulet-like structures. The mechanism of such instability is elucidated via an energy analysis. The main features of the rivulet pattern are described experimentally and recovered by direct numerical simulations.<p>In the second part, various models are obtained, which are valid for larger Reynolds numbers than the Benney equation and account for second-order viscous and inertial effects. We then elaborate a strategy to select the optimal model in terms of linear stability properties and existence of nonlinear solutions (solitary waves), for the widest possible range of parameters. This model -- called reduced model -- is a system of three coupled evolution equations for the local film thickness h, the local flow rate q and the surface temperature Ts. Solutions of this model indicate that the interaction of the hydrodynamic and thermocapillary modes is non-trivial, especially in the region of large-amplitude solitary waves.<p>Finally, the three-dimensional evolution of the solutions of the reduced model in the presence of periodic forcing and noise compares favourably with available experimental data in isothermal conditions and with direct numerical simulations in non-isothermal conditions.<p><p>------------------------------------------------<p><p>Cette thèse analyse la dynamique d'un film mince s'écoulant le long d'une paroi chauffée. Le chauffage crée des gradients de tension superficielle qui induisent des tensions thermocapillaires à la surface libre, altérant ainsi la stabilité et l'évolution du film. Grâce à la cohérence de l'écoulement assurée par la viscosité, deux approches permettant de réduire la dimensionnalité du problème original sont habituellement considérées suivant le débit (mesuré par le nombre de Reynolds): l'approximation asymptotique dite `longues ondes' pour les faibles nombres de Reynolds et l'approximation `intégrale couche limite' pour les nombres de Reynolds modérés. Cependant, la première approximation souffre de singularités et la dernière de prédictions imprécises du seuil de stabilité des ondes hydrodynamiques à la surface du film. Le but de cette thèse est donc double: dans une première partie, il s'agit de déterminer, de manière quantitative, la validité de l'équation d'évolution `longues ondes' (ou équation de Benney) pour l'épaisseur du film h, en y incluant l'effet thermocapillaire; et dans une seconde partie, il s'agit d'améliorer l'approche `intégrale couche limite' en combinant un développement en gradients avec une méthode aux résidus pondérés.<p>Dans la première partie, nous étudions l'équation de Benney, dans son domaine de validité, dans le cas d'un chauffage inhomogène et périodique dans la direction de l'écoulement. Cela induit des déformations permanentes de la surface libre avec un accroissement du transfert de chaleur dans les régions où le film est plus mince, mais aussi en moyenne. Un chauffage inhomogène modifie également la nature des solutions d'ondes progressives pour des gradients de températures modérés et conduit même à leur suppression pour des gradients de températures plus importants. De plus, ceux-ci, lorsqu'ils sont par exemple positifs le long de l'écoulement, produisent des épaississements localisés du film qui peuvent à leur tour devenir instables par rapport à des perturbations suivant la direction transverse à l'écoulement. Ce dernier s'organise alors sous forme d'une structure en rivulets. Le mécanisme de cette instabilité est élucidé via une analyse énergétique des perturbations. Les principales caractéristiques des structures en rivulets sont décrites expérimentalement et retrouvées par l'intermédiaire de simulations numériques. <p>Dans la seconde partie, nous dérivons une famille de modèles valables pour des nombres de Reynolds plus grands que l'équation de Benney, qui prennent en compte les effets visqueux et inertiels du second ordre. Nous élaborons ensuite une stratégie pour sélectionner le modèle optimal en fonction de ses propriétés de stabilité linéaire et de l'existence de solutions non-linéaires (ondes solitaires), et ce pour la gamme de paramètres la plus large possible. Ce modèle -- appelé modèle réduit -- est un système de trois équations d'évolution couplées pour l'épaisseur locale de film h, le débit local q et la température de surface Ts. Les solutions de ce modèle indiquent que l'interaction des modes hydrodynamiques et thermocapillaires n'est pas triviale, spécialement dans le domaine des ondes solitaires de grande amplitude. Finalement, l'évolution tri-dimensionnelle des solutions du modèle réduit en présence d'un forçage périodique ou d'un bruit se compare favorablement aux données expérimentales disponibles en conditions isothermes, ainsi qu'aux simulations numériques directes en conditions non-isothermes<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0228 seconds