• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 2
  • Tagged with
  • 20
  • 20
  • 14
  • 13
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Descriptive and explanatory tools for human movement and state estimation in humanoid robotics / Elements d'analyse et de description du mouvement humain et estimation d'état d'un robot humanoïde

Bailly, François 10 October 2018 (has links)
Le sujet principal de cette thèse est le mouvement des systèmes anthropomorphes, et plus particulièrement la locomotion bipède des humains et des robots humanoïdes. Pour caractériser et comprendre la locomotion bipède, il est instructif d'en étudier les causes, qui résident dans le contrôle et l'organisation du mouvement, et les conséquences qui en résultent, que sont le mouvement et les interactions physiques avec l'environnement. Concernant les causes, par exemple, quels sont les principes qui régissent l'organisation des ordres moteurs pour élaborer une stratégie de déplacement spécifique ? Puis, quelles grandeurs physiques pouvons-nous calculer pour décrire au mieux le mouvement résultant de ces commandes motrices ? Ces questions sont en partie abordées par la proposition d'une extension mathématique de l'approche du Uncontrolled Manifold au contrôle moteur de tâches dynamiques, puis par la présentation d'un nouveau descripteur de la locomotion anthropomorphe. En lien avec ce travail analytique vient le problème de l'estimation de l'état pour les systèmes anthropomorphes. La difficulté d'un tel problème vient du fait que les mesures apportent un bruit qui n'est pas toujours séparable des données informatives, et que l'état du système n'est pas nécessairement observable. Pour se débarrasser du bruit, des techniques de filtrage classiques peuvent être employées, mais elles sont susceptibles d'altérer le contenu des signaux d'intérêt. Pour faire face à ce problème, nous présentons une méthode récursive, basée sur le filtrage complémentaire, pour estimer la position du centre de masse et la variation du moment cinétique d'un système en contact, deux quantités centrales de la locomotion bipède. Une autre idée pour se débarrasser du bruit de mesure est de réaliser qu'il résulte en une estimation irréaliste de la dynamique du système. En exploitant les équations du mouvement, qui dictent la dynamique temporelle du système, et en estimant une trajectoire plutôt qu'un point unique, nous présentons ensuite une estimation du maximum de vraisemblance en utilisant l'algorithme de programmation différentielle dynamique pour effectuer une estimation optimale de l'état centroidal des systèmes en contact. Finalement, une réflexion pluridisciplinaire est présentée, sur le rôle fonctionnel et computationnel joué par la tête chez les animaux. La pertinence de son utilisation en robotique mobile y est discutée, pour l'estimation d'état et la perception multisensorielle. / The substantive subject of this thesis is the motion of anthropomorphic systems, and more particularly the bipedal locomotion of humans and humanoid robots. To characterize and understand bipedal locomotion, it is instructive to study its motor causes and its resulting physical consequences, namely, the interactions with the environment. Concerning the causes, for instance, what are the principles that govern the organization of motor orders in humans for elaborating a specific displacement strategy? And then, which physical quantities can we compute for best describing the motion resulting from these motor orders ? These questions are in part addressed by the proposal of a mathematical extension of the Uncontrolled Manifold approach for the motor control of dynamic tasks and through the presentation of a new descriptor of anthropomorphic locomotion. In connection with this analytical work, comes the problem of state estimation in anthropomorphic systems. The difficulty of such a problem comes from the fact that the measurements carry noise which is not always separable from the informative data, and that the state of the system is not necessarily observable. To get rid of the noise, classical filtering techniques can be employed but they are likely to distort the signals. To cope with this issue, we present a recursive method, based on complementary filtering, to estimate the position of the center of mass and the angular momentum variation of the human body, two central quantities of human locomotion. Another idea to get rid of the measurements noise is to acknowledge the fact that it results in an unrealistic estimation of the motion dynamics. By exploiting the equations of motion, which dictate the temporal dynamics of the system, and by estimating a trajectory versus a single point, we then present maximum likelihood estimation using the dynamic differential programming algorithm to perform optimal centroidal state estimation for systems in contact. Finally, a multidisciplinary reflection on the functional and computational role played by the head in animals is presented. The relevance of using this solution in mobile robotics is discussed, particularly for state estimation and multisensory perception.
12

Programmation de mouvements de locomotion et manipulation pour robots humanoïdes et expérimentations / Programming humanoid robots for locomotion and manipulation with experiments

Vaillant, Joris 28 May 2015 (has links)
Cette thèse propose une approche pour générer un mouvement corps complet avec contacts non coplanaires, permettant à un robot de se déplacer dans un environnement, de manipuler des objets complexes ou de collaborer avec différents agents. Les méthodes développées dans cette thèse tentent de prendre en compte une grande variété de robots, de l'humanoïde au manipulateur à base fixe en passant par les objets sous actionnés. En premier lieu, nous abordons le problème du choix des positions des points de contacts qu'un robot sous-actionné doit prendre pour se déplacer dans l'environnement. Nous calculons, en un seul problème d'optimisation non-linéaire, une séquence de postures qui satisfait une séquence de contacts donnés. Cette formulation permet de trouver la position des contacts optimale, car le choix de la position d'un contact d'une posture va prendre en compte les postures précédentes et suivantes. Elle permet aussi d'effectuer des tâches pour certaines postures qui prendront en compte l'aspect prioritaire du déplacement. Nous introduisons ensuite une méthode de génération de mouvement qui, en se basant sur la programmation quadratique, permet de résoudre le problème de géométrie inverse et de la dynamique inverse pour un robot à base fixe ou mobile, tout en satisfaisant des contraintes d'égalités et d'inégalités.Cette génération de mouvement est assez rapide pour fonctionner à la vitesse de la boucle de contrôle des robotsHRP2-10 et HRP4, et peut donc être utilisé en temps réel. À l'aide d'une machine à état, nous transformons la séquence de postures calculée à priori en une série de tâches à effectuer par le générateur de mouvement, ce qui permet à notre robot de se déplacer dans un environnement complexe. Nous étendons alors notre méthode de génération de mouvement pour calculer la commande d'un nombre arbitraire de robots. Cette extension nous permet de gérer des tâches de manipulation d'objets complexes, de collaboration entre plusieurs agents et de mouvement dans un environnement dynamique. Nous pouvons aussi spécifier directement les tâches dans le repère de l'objet manipulé pour faciliter l'élaboration de notre consigne. Dans l'optique de valider cette méthode sur un robot réel, nous formulons le problème d'estimation des paramètres inertiels d'un objet manipulé grâce à l'algèbre vectorielle spatiale. Finalement, nous validons nos travaux sur les robots HRP2-10 et HRP4. Sur le premier robot, nous validons la génération de posture et la génération de mouvement mono-robot sur le scénario demonté d'une échelle verticale aux normes industrielles. La manipulation d'objets et l'estimation des paramètres inertiels sont validées par la suite sur le robot HRP4. / This PhD proposes a whole body motion generation approach with non coplanar contacts that allowsa robot to move in an environment, manipulate complex objects or collaborate with differentagents.Methods developed in this PhD try to manage many kinds of robots, from the humanoid to thefixed base manipulator and also handling underactuated objects.Firstly, we address the problem contacts positioning that an underactuated robot should taketo move in its environment.We compute in one non-linear optimization problem a sequence of postures that fulfill aninputed contact list. This formulation allows to find the optimal contact placement regardingprevious and next stances. It also allows to execute a task for some posture while taking into accountthe priority of the motion.Next, we introduce a motion generation method that uses quadratic programming to solveinverse kinematics and dynamics problems for a fixed or mobile base robot under equality andinequality constraints.This motion generation is fast enough to fit the HRP2-10 and HRP4 control loop andcan be used in real-time.With a finite state machine we turn the posture sequence into a list of tasks that should beexecuted by the motion generation to allow a robot to move in a complex environment.We extend this motion generation scheme to compute the motion of an arbitrary number of robots.This extension allows us to manage complex object manipulation tasks, multi-agent collaboration andmotion in a dynamic environment. We can also specify a task in the manipulated object frameto ease motion design.To validate this method on a real robot, we formulate inertial parametersestimation of manipulated objects with spatial vector algebra.Finally, we validate our works on the HRP2-10 and HRP4 robot. On the first one,we validate the posture and mono-robot motion generation on a scenario where the robot climbs anindustry standard vertical ladder.On the second one, we validate object manipulation and inertial parameters estimation.
13

Optimisation semi-infinie sur GPU pour le contrôle corps-complet de robots / GPU-based Semi-Infinite Optimization for Whole-Body Robot Control

Chrétien, Benjamin 08 July 2016 (has links)
Un robot humanoïde est un système complexe doté de nombreux degrés de liberté, et dont le comportement est sujet aux équations non linéaires du mouvement. Par conséquent, la planification de mouvement pour un tel système est une tâche difficile d'un point de vue calculatoire. Dans ce mémoire, nous avons pour objectif de développer une méthode permettant d'utiliser la puissance de calcul des GPUs dans le contexte de la planification de mouvement corps-complet basée sur de l'optimisation. Nous montrons dans un premier temps les propriétés du problème d'optimisation, et des pistes d'étude pour la parallélisation de ce dernier. Ensuite, nous présentons notre approche du calcul de la dynamique, adaptée aux architectures de calcul parallèle. Cela nous permet de proposer une implémentation de notre problème de planification de mouvement sur GPU: contraintes et gradients sont calculés en parallèle, tandis que la résolution du problème même se déroule sur le CPU. Nous proposons en outre une nouvelle paramétrisation des forces de contact adaptée à notre problème d'optimisation. Enfin, nous étudions l'extension de notre travail au contrôle prédictif. / A humanoid robot is a complex system with numerous degrees of freedom, whose behavior is subject to the nonlinear equations of motion. As a result, planning its motion is a difficult task from a computational perspective.In this thesis, we aim at developing a method that can leverage the computing power of GPUs in the context of optimization-based whole-body motion planning. We first exhibit the properties of the optimization problem, and show that several avenues can be exploited in the context of parallel computing. Then, we present our approach of the dynamics computation, suitable for highly-parallel processing architectures. Next, we propose a many-core GPU implementation of the motion planning problem. Our approach computes the constraints and their gradients in parallel, and feeds the result to a nonlinear optimization solver running on the CPU. Because each constraint and its gradient can be evaluated independently for each time interval, we end up with a highly parallelizable problem that can take advantage of GPUs. We also propose a new parametrization of contact forces adapted to our optimization problem. Finally, we investigate the extension of our work to model predictive control.
14

Contrôle d'humanoïdes pour réaliser des tâches haptiques en coopération avec un opérateur humain

Evrard, Paul 07 December 2009 (has links) (PDF)
(résumé en anglais uniquement)
15

Vision based motion generation for humanoid robots

Stasse, Olivier 04 April 2013 (has links) (PDF)
Ce manuscrit présente mes activités de recherche sur les comportements basés vision pour des robots complexes comme les robots humanoïdes. La question scientifique sous-jacente qui structure ce travail est la suivante: " Quels sont les processus de décisions qui permettent à un robot humanoïde de générer des mouvements en temps réel basés sur des informations visuelles ?" Au football, les êtres humains peuvent décider de frapper une balle alors qu'ils courent et que tous les autres joueurs sont constamment en train de bouger. Reformuler comme un problème d'optimisation pour un robot humanoïde, trouver une solution pour un tel comportement est généralement très difficile du point de vue calculatoire. Par exemple, le problème de la recherche visuelle a été démontré comme étant NP-complet. La première partie de ce travail concerne la génération de mouvements temps réel. Partant des contraintes générales qu'un robot humanoïde doit remplir pour générer un mouvement faisable, des problèmes fondamentaux sont présentés. A partir de ceux-ci, plusieurs contributions permettant à un robot humanoïde de réagira à des changements de l'environnement sont présentés. Ils concernent la génération de la marche, les mouvements corps complets pour éviter des obstacles, et la planification de pas en temps réel dans des environnements contraints. La deuxième partie de ce travail concerne l'acquisition temps-réel de connaissance sur l'environnement à partir de la vision par ordinateur. Deux comportements principaux sont considérés: la recherche visuelle et la construction d'un modèle visuel d'un objet. Ils sont considérés tout en prenant compte le modèle du capteur, le coût du mouvement, les contraintes mécaniques du robot, la géométrie de l'environnement ainsi que les limitations du processus de vision. De plus des contributions sur le couplage de l'auto-localisation basé cartes avec la marche, la génération de pas basé sur l'asservissement visuel seront présentés. Finalement les technologies centrales développées dans les contextes précédents ont été utilisées dans différentes applications: l'interaction homme-robot, la téléopération, l'analyse de mouvement humains. Basé sur le retour d'expérience de plusieurs démonstrateurs intégrés sur le robot humanoïde HRP-2, la dernière partie de cette thèse proposent des pistes pour des idées permettant de lever les verrous technologiques actuels de la robotique humanoïde.
16

Apprentissage du modèle d'action pour une interaction socio-communicative des hommes-robots / Action Model Learning for Socio-Communicative Human Robot Interaction

Arora, Ankuj 08 December 2017 (has links)
Conduite dans le but de rendre les robots comme socio-communicatifs, les chercheurs ont cherché à mettre au point des robots dotés de compétences sociales et de «bon sens» pour les rendre acceptables. Cette intelligence sociale ou «sens commun» du robot est ce qui finit par déterminer son acceptabilité sociale à long terme.Cependant, ce n'est pas commun. Les robots peuvent donc seulement apprendre à être acceptables avec l'expérience. Cependant, en enseignant à un humanoïde, les subtilités d'une interaction sociale ne sont pas évidentes. Même un échange de dialogue standard intègre le panel le plus large possible de signes qui interviennent dans la communication et sont difficiles à codifier (synchronisation entre l'expression du corps, le visage, le ton de la voix, etc.). Dans un tel scénario, l'apprentissage du modèle comportemental du robot est une approche prometteuse. Cet apprentissage peut être réalisé avec l'aide de techniques d'IA. Cette étude tente de résoudre le problème de l'apprentissage des modèles comportementaux du robot dans le paradigme automatisé de planification et d'ordonnancement (APS) de l'IA. Dans le domaine de la planification automatisée et de l'ordonnancement (APS), les agents intelligents nécessitent un modèle d'action (plans d'actions dont les exécutions entrelacées effectuent des transitions de l'état système) afin de planifier et résoudre des problèmes réels. Au cours de cette thèse, nous présentons deux nouveaux systèmes d'apprentissage qui facilitent l'apprentissage des modèles d'action et élargissent la portée de ces nouveaux systèmes pour apprendre les modèles de comportement du robot. Ces techniques peuvent être classées dans les catégories non optimale et optimale. Les techniques non optimales sont plus classiques dans le domaine, ont été traitées depuis des années et sont de nature symbolique. Cependant, ils ont leur part de quirks, ce qui entraîne un taux d'apprentissage moins élevé que souhaité. Les techniques optimales sont basées sur les progrès récents dans l'apprentissage en profondeur, en particulier la famille à long terme (LSTM) de réseaux récurrents récurrents. Ces techniques sont de plus en plus séduisantes par la vertu et produisent également des taux d'apprentissage plus élevés. Cette étude met en vedette ces deux techniques susmentionnées qui sont testées sur des repères d'IA pour évaluer leurs prouesses. Ils sont ensuite appliqués aux traces HRI pour estimer la qualité du modèle de comportement du robot savant. Ceci est dans l'intérêt d'un objectif à long terme d'introduire l'autonomie comportementale dans les robots, afin qu'ils puissent communiquer de manière autonome avec les humains sans avoir besoin d'une intervention de «magicien». / Driven with the objective of rendering robots as socio-communicative, there has been a heightened interest towards researching techniques to endow robots with social skills and ``commonsense'' to render them acceptable. This social intelligence or ``commonsense'' of the robot is what eventually determines its social acceptability in the long run.Commonsense, however, is not that common. Robots can, thus, only learn to be acceptable with experience. However, teaching a humanoid the subtleties of a social interaction is not evident. Even a standard dialogue exchange integrates the widest possible panel of signs which intervene in the communication and are difficult to codify (synchronization between the expression of the body, the face, the tone of the voice, etc.). In such a scenario, learning the behavioral model of the robot is a promising approach. This learning can be performed with the help of AI techniques. This study tries to solve the problem of learning robot behavioral models in the Automated Planning and Scheduling (APS) paradigm of AI. In the domain of Automated Planning and Scheduling (APS), intelligent agents by virtue require an action model (blueprints of actions whose interleaved executions effectuates transitions of the system state) in order to plan and solve real world problems. During the course of this thesis, we introduce two new learning systems which facilitate the learning of action models, and extend the scope of these new systems to learn robot behavioral models. These techniques can be classified into the categories of non-optimal and optimal. Non-optimal techniques are more classical in the domain, have been worked upon for years, and are symbolic in nature. However, they have their share of quirks, resulting in a less-than-desired learning rate. The optimal techniques are pivoted on the recent advances in deep learning, in particular the Long Short Term Memory (LSTM) family of recurrent neural networks. These techniques are more cutting edge by virtue, and produce higher learning rates as well. This study brings into the limelight these two aforementioned techniques which are tested on AI benchmarks to evaluate their prowess. They are then applied to HRI traces to estimate the quality of the learnt robot behavioral model. This is in the interest of a long term objective to introduce behavioral autonomy in robots, such that they can communicate autonomously with humans without the need of ``wizard'' intervention.
17

Emergence of complex behaviors from coordinated predictive control in humanoid robotics / Emergence de comportements complexes par commande prédictive coordonnée en robotique humanoïde

Ibanez, Aurélien 25 September 2015 (has links)
Le problème de commande motrice de systèmes exécutant des activités multi-objectifs et fortement contraintes est à résoudre pour permettre l’émergence de comportements performants et robustes ; l’élaboration de stratégies complexes de coordination motrice est critique pour en assurer les performances, faisabilité et sécurité.Bien que les approches de commande prédictive multi-objectifs permettent la définition de stratégies complexes et sous contraintes coordonnant l’activité motrice du système, leur coût de calcul est un inconvénient critique à leur application.Le travail présenté dans ce manuscrit vise à considérer des techniques de commande prédictive multi-objectifs pour des applications pratiques à la robotique humanoïde.Une architecture de commande est alors proposée sous la forme d’un contrôleur multi-objectif à deux niveaux, exploitant les avantages respectifs des formulations prédictive et instantanée.La contribution de ce travail prend la forme de la validation des avantages d’une telle approche dans son développement pour des défis pratiques, en simulation et implémentation temps-réel, sur les robots iCub et TORO ainsi que sur des modèles d’humain.Le coût de calcul du niveau prédictif est contenu par l’introduction de problèmes réduits, permettant la formulation avantageuse de problèmes de commande au travers de programmes en nombres entiers mixtes et de distributions séquentielles et parallèles.Malgré les approximations sur la dynamique du système au niveau prédictif, des comportements complexes émergent, exploitant des stratégies de coordination entre objectifs et contraintes conflictuels pour augmenter les performances et robustesse face à des perturbations. / Rising to the challenge of motor control for systems involved in multi-objective and highly-constrained activities is a requirement to enable the emergence of efficient and robust behaviors; the elaboration of complex motor coordination strategies is critical in ensuring performance, feasibility and safety.Although multi-objective predictive approaches enable the definition of complex and constrained strategies coordinating the motor activity of the system, their computational cost is a critical drawback from practical applications.The work presented in this dissertation aims at considering multi-objective predictive control for feasible and practical applications to humanoid robotics.A control architecture is proposed to this purpose as a multi-objective, two-layered controller exploiting the respective advantages of predictive and instantaneous formulations.The contribution of this work takes the form of the validation of the benefits from such an approach in its development for practical challenges and applications, in simulation and real-time implementation, on the iCub and TORO robots and virtual human models.Computational demand of the predictive level is contained with the introduction of reduced multi-objective predictive problems, enabling computationally-favorable formulations of the control problem using mixed-integer programming and sequential and parallel distributions.Despite the resulting approximations on the dynamics of the system at the predictive level, complex behaviors are emerging, exploiting elaborate coordination strategies between conflicting objectives and constraints to increase performance and robustness against disturbances.
18

Computational foundations of anthropomorphic locomotion / Fondements calculatoires de la locomotion anthropomorphe

Carpentier, Justin 01 September 2017 (has links)
La locomotion anthropomorphe est un processus complexe qui met en jeu un très grand nombre de degrés de liberté, le corps humain disposant de plus de trois cents articulations contre une trentaine chez les robots humanoïdes. Pris dans leur ensemble, ces degrés de liberté montrent une certaine cohérence rendant possible la mise en mouvement du système anthropomorphe et le maintien de son équilibre, dans le but d'éviter la chute. Cette thèse met en lumière les fondements calculatoires à l'origine de cette orchestration. Elle introduit un cadre mathématique unifié permettant à la fois l'étude de la locomotion humaine, et la génération de trajectoires locomotrices pour les robots humanoïdes. Ce cadre consiste en une réduction de la dynamique corps-complet du système pour ne considérer que sa projection autour du centre de gravité, aussi appelée dynamique centroïdale. Bien que réduite, nous montrons que cette dynamique centroïdale joue un rôle central dans la compréhension et la formation des mouvements locomoteurs. Pour ce faire, nous établissons dans un premier temps les conditions d'observabilité de cette dynamique, c'est-à-dire que nous montrons dans quelle mesure cette donnée peut être appréhendée à partir des capteurs couramment employés en biomécanique et en robotique. Forts de ces conditions d'observabilité, nous proposons un estimateur capable de reconstruire la position non-biaisée du centre de gravité. A partir de cet estimateur et de l'acquisition de mouvements de marche sur divers sujets, nous mettons en évidence la présence d'un motif cycloïdal du centre de gravité dans le plan sagittal lorsque l'humain marche de manière nominale, c'est-à-dire sans y penser. La présence de ce motif suggère l'existence d'une synergie motrice jusqu'alors ignorée, soutenant la théorie d'une coordination générale des mouvements pendant la locomotion. La dernière contribution de cette thèse porte sur la locomotion multi-contacts. Les humains ont une agilité remarquable pour effectuer des mouvements locomoteurs qui nécessitent l'utilisation conjointe des bras et des jambes, comme lors de l'ascension d'une paroi rocheuse. Comment doter les robots humanoïdes de telles capacités ? La difficulté n'est certainement pas technologique, puisque les robots actuels sont capables de développer des puissances mécaniques suffisantes. Leurs performances, évaluées tant en termes de qualité des mouvements que de temps de calcul, restent très limitées. Dans cette thèse, nous abordons le problème de génération de trajectoires multi-contacts sous la forme d'un problème de commande optimale. L'intérêt de cette formulation est de partir du modèle réduit de la dynamique centroïdale tout en répondant aux contraintes d'équilibre. L'idée originale consiste à maximiser la vraisemblance de cette dynamique réduite vis-à-vis de la dynamique corps-complet. Elle repose sur l'apprentissage d'une mesure d'occupation qui reflète les capacités cinématiques et dynamiques du robot. Elle est effective : l'algorithmique qui en découle est compatible avec des applications temps réel. L'approche a été évaluée avec succès sur le robot humanoïde HRP-2, sur plusieurs modes de locomotions, démontrant ainsi sa polyvalence. / Anthropomorphic locomotion is a complex process that involves a very large number of degrees of freedom, the human body having more than three hundred joints against thirty in humanoid robots. Taken as a whole, these degrees of freedom show a certain coherence making it possible to set the anthropomorphic system in motion and maintain its equilibrium, in order to avoid falling. This thesis highlights the computational foundations behind this orchestration. It introduces a unified mathematical framework allowing both the study of human locomotion and the generation of locomotive trajectories for humanoid robots. This framework consists of a reduction of the body-complete dynamics of the system to consider only its projection around the center of gravity, also called centroid dynamics. Although reduced, we show that this centroidal dynamics plays a central role in the understanding and formation of locomotive movements. To do this, we first establish the observability conditions of this dynamic, that is to say that we show to what extent this data can be apprehended from sensors commonly used in biomechanics and robotics. Based on these observability conditions, we propose an estimator able to reconstruct the unbiased position of the center of gravity. From this estimator and the acquisition of walking motions on various subjects, we highlight the presence of a cycloidal pattern of the center of gravity in the sagittal plane when the human is walking nominally, that is, to say without thinking. The presence of this motif suggests the existence of a motor synergy hitherto unknown, supporting the theory of a general coordination of movements during locomotion. The last contribution of this thesis is on multi-contact locomotion. Humans have remarkable agility to perform locomotive movements that require joint use of the arms and legs, such as when climbing a rock wall. How to equip humanoid robots with such capabilities? The difficulty is certainly not technological, since current robots are able to develop sufficient mechanical powers. Their performances, evaluated both in terms of quality of movement and computing time, remain very limited. In this thesis, we address the problem of generating multi-contact trajectories in the form of an optimal control problem. The interest of this formulation is to start from the reduced model of centroid dynamics while responding to equilibrium constraints. The original idea is to maximize the likelihood of this reduced dynamic with respect to body-complete dynamics. It is based on learning a measurement of occupation that reflects the kinematic and dynamic capabilities of the robot. It is effective: the resulting algorithmic is compatible with real-time applications. The approach has been successfully evaluated on the humanoid robot HRP-2, on several modes of locomotion, thus demonstrating its versatility.
19

Contribution à la commande corps-complet des robots humanoïdes : du concept à l'implémentation temps-réel / Contribution to whole-body control of humanoid robots : From concept to real time implementation

Galdeano, David 13 November 2014 (has links)
Les robots humanoïdes sont en passe d'être commercialisés pour le public à grande échelle, mais pour réussir cet objectif il est nécessaire de rendre ces robots fiables, fonctionnels et sécurisés. Ceci implique de nombreuses améliorations par rapport à de l'état de l'art, pour permettre un produit fini. Un des domaines à améliorer est la commande corps-complet des robots humanoïdes. Les objectifs de cette thèse sont de proposer une architecture de commande permettant de générer des mouvements corps-complet bio-inspirés. L'idée principale étant de s'inspirer de la marche humaine afin de reproduire ces mouvements sur un robot humanoïde. La solution de commande proposée utilise le principe de tâches pour quatre objectifs cinématiques: (i) la pose relative des pieds, (ii) la position du CoM, (iii) l'orientation du buste, et (iv) l'évitement des butées articulaires. La stabilité est renforcée en modifiant la position du CoM désirée à l'aide d'un stabilisateur basé sur la régulation non linéaire du ZMP. L'approche résultante est appelée architecture de commande hybride cinématique/dynamique. Cette approche a été validée expérimentalement sur deux prototypes de robots humanoïdes pour différentes tâches telles que le squat et la marche. / Humanoid robots are a rising trend, and are about to be sold to the public on a large scale, but for this to be possible it is necessary to make them reliable, secure and functional. This implies many improvements over the prior state of the art. A domain of improvement is the full-body control of humanoid robots. The objective of this thesis is to propose a control architecture for generating a bio-inspired full-body control. The main idea is to learn from human walking to replicate these movements on a humanoid robot. The proposed control solution uses the principle of kinematics task for four objectives: (i) the relative pose of the feet, (ii) the position of the Centre de masse (CoM), (iii) the orientation of the upper-body, and (iv) the joints' limits avoidance. Stability is enhanced by modifiying the CoM position by using a stabilizer based on nonlinear regulation of the Zero Moment Point (ZMP). The resulting approach is called hybrid kinematic / dynamic control architecture. This approach has been validated experimentally on two prototypes of humanoid robots for tasks such as squat and walking.
20

Commande de chute pour robots humanoïdes par reconfiguration posturale et compliance adaptative / Humanoid fall control by postural reshaping and adaptive compliance

Samy, Vincent 13 November 2017 (has links)
Cette thèse traite du problème de la chute de robots humanoïdes. L’étude consiste à découpler la stratégie de chute en une phase de pré-impact et une phase de post-impact. Dans la première, une solution géométrique permet au robot de choisir des points d’impact dans un environnement encombré. Pour ce faire, le robot réadapte sa posture tout en évident les singularités de chute et en préparant le seconde phase. La phase de post-impact utilise une commande par Programmation Quadratique (QP) qui permet d’adapter les gains Proportionnels-Dérivés (PD)des moteurs en ligne, ceci afin d’obtenir de la compliance dans les articulations. L’approche consiste à incorporer les gains de raideur et d’amortissement dans le vecteur d’optimisation du QP avec les variables habituelles que sont l’accélération articulaire et les forces de contact. Les contraintes ont été adaptées à ce nouveau QP. Enfin,comme la solution est locale, une commande de modèle prédictif sur un modèle simplifié du robot. A chaque pas du développement, plusieurs expériences et simulations ont été effectuées. / This thesis deals with the problem of humanoid falling with a decoupled strategy consisting of a pre-impactand a post-impact stages. In the pre-impact stage, geometrical reasoning allows the robot to choose appropriateimpact points in the surrounding environment –that can be unstructured and may contain cluttered obstacles,and to adopt a posture to reach them while avoiding impact singularities and preparing for the post-impact. Thepost-impact stage uses a quadratic program controller that adapts on-line the joint proportional-derivative (PD)gains to make the robot compliant, i.e. to absorb post-impact dynamics, which lowers possible damage risks.We propose a new approach incorporating the stiffness and damping gains directly as decision variables in theQP along with the usually-considered variables that are the joint accelerations and contact forces. By doing so,various constraints can be added to the QP. Finally, since the gain adaptation is local, we added a preview ona time-horizon for more optimal gain adaptation based on model reduction. At each step of the development,several experiments on the humanoid robot HRP-4 in a full-dynamics simulator are presented and discussed.

Page generated in 0.0384 seconds