Spelling suggestions: "subject:"dock mechanics"" "subject:"rock mechanics""
291 |
Critérios recentes de ruptura na estabilidade de lavra a céu aberto. / Sem título em inglêsFelipe Giusepone 29 November 2010 (has links)
Projetos de estabilidade de escavações mineiras por meio de estudos de caracterização do maciço rochoso com o uso da mecânica de rochas são indispensáveis para otimizar o aproveitamento das jazidas, garantir segurança nas operações de lavra e minimizar os impactos ambientais decorrentes da instabilidade dos taludes da cava. Nesta dissertação utilizou-se de critérios recentes de ruptura em rocha, para obtenção de dados de entrada em métodos já clássicos de análise da estabilidade de taludes em maciços rochosos para a cava de dolomito lavrada a céu aberto. Os critérios utilizados serão avaliados com relação à compatibilidade dos resultados obtidos com sua aplicação e a coerência com a situação atual observada na lavra em desenvolvimento. Análises sobre a paralisação da lavra em decorrência dos problemas de instabilidade também serão avaliadas e discutidas. Para ilustrar esta dissertação foi eleita a jazida de dolomito localizada no Sinclinal do Gandarela em virtude dos problemas de instabilidade encontrados na cava. As conclusões finais são apresentadas nos últimos itens deste trabalho. / The design of stable excavations using rock masses characterization with the tools provided by rock mechanics, are indispensable for optimizing the economic exploitation of ore deposits, to ensure the safety in the mining works and to minimize the environmental impacts deriving of the open pit slopes instability. In this Dissertation, for obtain the input data for classic methods of rocky slopes stability analyses, it is used the most recent criteria of rock mass failure applied for an open pit mine of dolomite. The utilized criteria compatibility will be evaluated by the results obtained with their utilization and the coherence with the real situation verified at the developing mine. Will be evaluated and discussed the analyses about the stoppage of the mine works due to the slope instability problems. To illustrate this Dissertation are elected a dolomite ore deposit situated at the Gandarela Synclinal on account of the instability problems that occurred in the mine pit. The final conclusions are listed in the items presented at the end of this work.
|
292 |
Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock facesFeng, Quanhong January 2001 (has links)
To analyse the influence of fractures on hydraulic andmechanical behaviour of fractured rock masses, it is essentialto characterise fracture geometry at exposed rock faces. Thisthesis describes three semi-automatic methods for measuring andquantifying geometrical parameters of fractures, and aims tooffer a novel approach to the traditional mapping methods. Three techniques, i.e. geodetic total station, close-rangephotogrammetry and 3-D laser scanner, are used in this studyfor measurement of fracture geometry. The advantages of thesetechniques compared with the traditional method are: i)fracture geometry is quantified semi-automatically in threedimensions; ii) fracture measurements are obtained withoutphysically touching the rock face; iii) the accuracy offracture measurements is improved comparing with thetraditional method; iv) both quantitative and spatial analysisof fracture geometry is possible; v) it offers a way todigitally record the rock surface in three dimensions and invisual format as a database for other applications. The common approach for fracture mapping by using the noveltechniques comprises three main steps: i) capturing 3-Dco-ordinates of target points; ii) quantifying geometricalparameters of fractures from the recorded co-ordinates; iii)documenting the results of fracture mapping. The details ofcapturing 3-D co-ordinates of target points are introduced. Anew algorithm is developed for computing orientation offracture planes. A multiple approach for documenting thefracture mapping results is presented. Application of thesetechniques for measuring and quantifying the geometricalparameters of fractures, such as orientation, trace length andsurface roughness, are demonstrated. The presented methods can greatly improve the quality offracture measurements and avoid the drawbacks inherent intraditional methods. However, it can not replace the humancapacity to filter out and interpret the large amount ofgeometrical information displayed on the rock faces. Themethods may offer an assistance to engineers or geologists inobtaining as much information as possible about the geometryand orientation of rock fractures for rock engineeringapplications. <b>Keywords:</b>3-D laser scanner, close-range photogrammetry,engineering geology, fracture geometry, fracture mapping, rockengineering, rock faces, rock mechanics, three-dimension, totalstation.
|
293 |
Strength And Deformation Behaviour Of Jointed Rocks : An Equivalent Continuum ModelMaji, Vidya Bhushan 08 1900 (has links)
Most rock masses encountered in civil and mining engineering projects contain pre-existing discontinuities. These discontinuities weaken the rock masses to an extent, which depends very much on the size of engineering structure relation to discontinuity spacing. The strength and deformability of rock mass is controlled not only by the intact portion of rock, but by the characteristic of the joints that break up the mass, particularly their pattern and their orientation with respect to the in-situ stresses. In considering the effect of joints, the discrete approach emerged as an efficient tool and advocated since 1970s (Cundall, 1971). However, the numerical approach with modelling the joints explicitly has the limitation of computational complexity for modelling large-scale problems with extremely large number of joints. As an alternative to this limitation, the equivalent continuum approach models the jointed rock masses as a continuum with the equivalent properties that represent implicitly the effects of the joints.
Several numerical methods have been developed by various researchers to model jointed rock masses as equivalent continuum, using various techniques. However, the existing equivalent continuum models are complicated and need more input data from experimental or field testing in order to carry out the analysis. Present approach attempts to use statistical relations, which are simple and obtained after analyzing a large data from the literature on laboratory test results of jointed rock masses. Systematic investigations were done including laboratory experiments to develop the methodologies to determine the equivalent material properties of rock mass and their stress-strain behaviour, using a hyperbolic approach (Duncan and Chang, 1970). Present study covers the development of equivalent continuum model for rock mass right from developing statistical correlations to find out equivalent material properties based on experimental results, to the implementation of the model in FLAC3D for 3-dimensional applications and subsequently verification leading to real field application involving jointed rocks.
Experimental work carried out to study the strength and deformation characteristics of jointed rock by using standard laboratory tests on cylindrical specimens of plaster of Paris by introducing artificial joints. The objective was to derive the compressive strength and elastic modulus of rock mass as a function of intact rock strength/modulus and joint factor. The obtained experimental results and developed relations were compared with the previous experimental data on jointed rocks. Further, a failure criterion as proposed by Ramamurthy (1993) has been validated from these experimental results of intact and jointed rock specimens. Empirical relationships similar to Ramamurthy’s relations are established for the prediction of rock mass strength and were compared with proposed equation by Ramamurthy (1993) and are found comparable. However, the equations by Ramamurthy were based on different variety of rocks and therefore recommended for further use and were used in numerical models.
For efficient application to the field problems the equivalent continuum model is implemented in the program Fast Lagrangian analysis of continua (FLAC3D). The model was rigorously validated by simulating jointed rock specimens. Element tests were conducted for both uniaxial and triaxial cases and then compared with the respective experimental results. The numerical test program includes laboratory tested cylindrical rock specimens of different rock types, from plaster of Paris representing soft rock to granite representing very hard rock. The results of the equivalent continuum modelling were also compared with explicit modelling results where joints were incorporated in the model as interfaces. To represent highly discontinuous system, the laboratory investigation on block jointed specimens of gypsum plaster (Brown and Trollope, 1970) was modelled numerically using equivalent continuum approach.
To extend the applicability of the model to field applications, investigation were done by undertaking numerical modelling of two case studies underground caverns, one Nathpa Jhakri hydroelectric power cavern in Himachal Pradesh, India, and the other one Shiobara hydroelectric power cavern in Japan. This study verifies the efficiency of the present approach in estimating ground movement and stress distribution around the excavations in jointed rock masses. The modelling results were also compared with six other computation models as presented by Horii et al. (1999) for the Shiobara power house cavern. An attempt has also been made to numerically model the support system for the cavern and investigate the efficiency of reinforcements using FLAC3D. The model was also used for analyzing large scale slope in jointed rocks using the equivalent continuum model by undertaking numerical modelling of Anji bridge abutment slopes, in Jammu and Kashmir, India. Slope stability analysis is done using equivalent continuum approach for both, the original profiles as well as with the pier loads on cut profiles. Attempt was also made to exhibit the shear strength dependency of the strain though the hyperbolic stress- strain model. The shear strain developed in the slope increases with reducing the shear strength. The relationship between the shear strength reduction ratio ‘R’ and axial strain ‘ε’, for different values of failure ratio ‘Rf’ was studied and it was observed that, the value of ‘ε’ increases, as the value of ‘R’ increases especially it increases rapidly when the value ‘R’ approaches certain critical value, which varies with the value of ‘Rf’. This critical value of R is known as the critical shear strength reduction factor Rc and is highly sensitive to the confining stress. As the value of Rf increases, representing a transition from linear elastic nature to nonlinear nature, the value of critical shear strength reduction ratio also decreases. Relationship between the critical shear strength reduction ratio and the safety factor were examined to elucidate their physical meaning. It was observed that at critical value of the shear strength reduction ratio, a well defined failure shear zone developed from the toe to the crest of the slope.
Intelligent models using ANNs were also developed to predict the elastic modulus of jointed rocks as an alternative to empirical equations and without predefining a mathematical model to correlate the properties.
|
294 |
Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock facesFeng, Quanhong January 2001 (has links)
<p>To analyse the influence of fractures on hydraulic andmechanical behaviour of fractured rock masses, it is essentialto characterise fracture geometry at exposed rock faces. Thisthesis describes three semi-automatic methods for measuring andquantifying geometrical parameters of fractures, and aims tooffer a novel approach to the traditional mapping methods.</p><p>Three techniques, i.e. geodetic total station, close-rangephotogrammetry and 3-D laser scanner, are used in this studyfor measurement of fracture geometry. The advantages of thesetechniques compared with the traditional method are: i)fracture geometry is quantified semi-automatically in threedimensions; ii) fracture measurements are obtained withoutphysically touching the rock face; iii) the accuracy offracture measurements is improved comparing with thetraditional method; iv) both quantitative and spatial analysisof fracture geometry is possible; v) it offers a way todigitally record the rock surface in three dimensions and invisual format as a database for other applications.</p><p>The common approach for fracture mapping by using the noveltechniques comprises three main steps: i) capturing 3-Dco-ordinates of target points; ii) quantifying geometricalparameters of fractures from the recorded co-ordinates; iii)documenting the results of fracture mapping. The details ofcapturing 3-D co-ordinates of target points are introduced. Anew algorithm is developed for computing orientation offracture planes. A multiple approach for documenting thefracture mapping results is presented. Application of thesetechniques for measuring and quantifying the geometricalparameters of fractures, such as orientation, trace length andsurface roughness, are demonstrated.</p><p>The presented methods can greatly improve the quality offracture measurements and avoid the drawbacks inherent intraditional methods. However, it can not replace the humancapacity to filter out and interpret the large amount ofgeometrical information displayed on the rock faces. Themethods may offer an assistance to engineers or geologists inobtaining as much information as possible about the geometryand orientation of rock fractures for rock engineeringapplications.</p><p><b>Keywords:</b>3-D laser scanner, close-range photogrammetry,engineering geology, fracture geometry, fracture mapping, rockengineering, rock faces, rock mechanics, three-dimension, totalstation.</p>
|
295 |
Mechanischer Eingriff hochfrequent aktivierter Werkzeuge in FestgesteinEbenhan, Karsten 12 March 2014 (has links) (PDF)
Um die Vortriebsleistung von Maschinen zur Festgesteinsgewinnung zu steigern, wird das Prinzip der Aktivierung seit Jahren erfolgreich eingesetzt. Dabei wird der grundlegenden Arbeitsbewegung des eingreifenden Werkzeugs eine Schlag- oder Vibrationsbewegung überlagert. Im Rahmen der vorliegenden Arbeit wurde die Möglichkeit zur hochfrequenten Aktivierung von Werkzeugen im Eingriff in Festgestein untersucht. Ziel der Arbeit ist es, die Besonderheiten beim Eingriff hochfrequent aktivierter Werkzeuge in Festgestein genauer zu definieren und zu klären, auf welchen Ursachen sie beruhen. Es werden konventionelle und hochfrequente Aktivierungsprinzipien beispielhaft vorgestellt und ein kurzer Einblick in das untersuchte Aktivierungsprinzip und dessen Besonderheiten gegeben. Eine Literaturrecherche gibt Informationen zu den Eigenschaften von Gesteinen mit besonderem Fokus auf dynamisch veränderlichen Kennwerten. Weiterhin wird Literatur zu den physikalischen Grundlagen des Werkzeugeingriffs und der Piezoaktorik vorgestellt. Eine theoretische Verarbeitung dieser Informationen in Form von Modellen wird neben praktischen Versuchen an einem Prüfstand vorgenommen.
|
296 |
Shear-slip induced seismic activity in underground mines : a case study in Western AustraliaReimnitz, Marc January 2004 (has links)
Mining induced seismic activity and rockbursting are critical concerns for many underground operations. Seismic activity may arise from the crushing of highly stressed volumes of rock around mine openings or from shear motion on planes of weakness. Shear-slip on major planes of weakness such as faults, shear zones and weak contacts has long been recognized as a dominant mode of failure in underground mines. In certain circumstances, it can generate large seismic events and induce substantial damage to mine openings. The Big Bell Gold mine began experiencing major seismic activity and resultant damage in 1999. Several seismic events were recorded around the second graphitic shear between April 2000 and February 2002. It is likely that the seismic activity occurred as a result of the low strength of the shear structure combined with the high level of mining induced stresses. The stability of the second graphitic shear was examined in order to gain a better understanding of the causes and mechanisms of the seismic activity recorded in the vicinity of the shear structure as mining advanced. The data were derived from the observation of the structure exposures, numerical modelling and seismic monitoring. The numerical modelling predictions and the interpreted seismic monitoring data were subsequently compared in order to identify potential relationships between the two. This thesis proposes the Incremental Work Density (IWD) as a measure to evaluate the relative likelihood of shear-slip induced seismic activity upon major planes of weakness. IWD is readily evaluated using numerical modelling and is calculated as the product of the average driving shear stress and change in inelastic shear deformation during a given mining increment or step. IWD is expected to correlate with shear-slip induced seismic activity in both space and time. In this thesis, IWD was applied to the case study of the second graphitic shear at the Big Bell mine. Exposures of the second graphitic shear yielded information about the physical characteristics of the structure and location within the mine. Numerical modelling was used to examine the influence of mining induced stresses on the overall behaviour of the shear structure. A multi-step model of the mine was created using the three- dimensional boundary element code of Map3D. The shear structure was physically incorporated into the model in order to simulate inelastic shear deformation. An elasto-plastic Mohr-Coulomb material model was used to describe the structure behaviour. The structure plane was divided into several elements in order to allow for the comparison of the numerical modelling predictions and the interpreted seismic data. Stress components, deformation components and IWD values were calculated for each element of the shear structure and each mining step. The seismic activity recorded in the vicinity of the second graphitic shear was back analysed. The seismic data were also gridded and smoothed. Gridding and smoothing of individual seismic moment and seismic energy values resulted in the definition of indicators of seismic activity for each element and mining step. The numerical model predicted inelastic shear deformation upon the second graphitic shear as mining advanced. The distribution of modelled IWD suggested that shear deformation was most likely seismic upon a zone below the stopes and most likely aseismic upon the upper zone of the shear structure. The distribution of seismic activity recorded in the vicinity of the shear structure verified the above predictions. The seismic events predominantly clustered upon the zone below the stopes. The results indicated that the seismic activity recorded in the vicinity of the second graphitic shear was most likely related to both the change in inelastic shear deformation and the level of driving shear stress during mechanical shearing. Time distribution of the seismic events also indicated that shear deformation and accompanying seismic activity were strongly influenced by mining and were time-dependant. Seismic activity in the vicinity of the second graphitic shear occurred as a result of the overall inelastic shear deformation of the shear structure under mining induced stresses. A satisfactory relationship was found between the spatial distribution of modelled IWD upon the shear structure and the spatial distribution of interpreted seismic activity (measured as either smoothed seismic moment or smoothed seismic energy). Seismic activity predominantly clustered around a zone of higher IWD upon the second graphitic shear as mining advanced. However, no significant statistical relationship was found between the modelled IWD and the interpreted seismic activity. The lack of statistical relationship between the modelled and seismic data may be attributed to several factors including the limitations of the techniques employed (e.g. Map3D modelling, seismic monitoring) and the complexity of the process involved.
|
297 |
Caracterização e classificação de maciços rochosos da mina de Volta Grande, Nazareno, Minas Gerais / Rock mass classification applied to Volta Grande underground mine site, Nazareno, Minas GeraisJaques, Daniel Silva 24 October 2014 (has links)
Made available in DSpace on 2015-03-26T13:28:36Z (GMT). No. of bitstreams: 1
texto completo.pdf: 9035273 bytes, checksum: 309210e2946157c33b9a3a555deaca1b (MD5)
Previous issue date: 2014-10-24 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Rock mass classification is a important procedure for the analysis of the mechanical behavior of a rock and its discontinuities, under the several applications on engineering projects such as, for example, underground mining. The present study has the aim of perform a geomechanical classification of the rock masses occurring under surface at Volta Grande mine, located in Nazareno, Minas Gerais State, Southeast Brazil, in order to evaluate the technical feasibility of development of an underground mine. Currently Volta Grande mine operates only an open pit mine for Tantalum in a pegmatitic body. Because its high waste-ore ratio both operational and commercial feasibility can become impracticable, as this ratio is expected to increase with open pit depth. All data necessary to classify the underground rock mass by using the two most widespread classification systems RMR and Q were collected to accomplish the proposed goals. Data were collected in 28 boreholes located on geological cross-sections, spread all over the area, previously selected in order to allow an adequate geological and geomechanical characterization of the study area for the initial underground proposed depth (150m). Sampling was done both for different rock and weathering grades types, in a quantity sufficient to perform all physical, point load, compressive strength, triaxial and wave velocity propagation tests. All tests were performed according to International Society for Rock Mechanics (ISRM) 2007 methods. Results were compared with similar rock- types results from the literature in order to evaluate its applicability. Results shows that both classification systems are in accordance with rock masses from superficial field observations. Nevertheless, it was observed that Q system was much more sensitive then RMR system, resulting in a higher number of rock mass classes. This higher sensitivity results mainly from RQD, Jn, Ja and Jr parameters, resulting in a very compartmentalized rock mass, considered not feasible for design purposes. Based on that assumption, RMR system is more recommended for using during feasibility studies as it encompasses several thin different class layers, resulting in a more applicable and handle system. It must be highlighted that the present study results are for feasibility studies only and cannot be applied for executive purposes, as much more quantity of data would be necessary. The final result points to a technical feasibility of underground mining, resulting in an increase of mine lifetime, reduction of waste-ore ratio, and provision of important initial mechanical information for excavation and support studies. / A classificação de maciços rochosos é um procedimento importante para a análise do comportamento mecânico das rochas e suas descontinuidades frente às solicitações que lhes serão impostas em decorrência de projetos de engenharia como, por exemplo, os de minas subterrâneas. O presente estudo teve por objetivo realizar a classificação geomecânica dos maciços rochosos da mina de Volta Grande, Nazareno-MG, Brasil, em profundidade, visando a avaliação da viabilidade técnica de implantação de lavra subterrânea. Atualmente, a mina opera a céu aberto a lavra de um corpo Pegmatítico intrusivo, em Anfibolito como rocha encaixante, para obtenção de Tântalo, que é um produto de alto valor agregado. A retirada do Pegmatito através de lavra a céu aberto pode se tornar inviável operacional e economicamente, pois o corpo do minério possui um mergulho de 20 graus para Sudeste, resultando em um aumento significativo da relação estéril-minério com o aumento da profundidade da cava. Para a realização do estudo foram coletados dados necessários à classificação dos maciços existentes em profundidade pelos dois métodos mais difundidos no mundo inteiro para este propósito - o sistema RMR e o sistema Q. A aplicação destes métodos demandou a caracterização geológico-geotécnica da área de estudo por meio da interpretação de testemunhos de sondagem obtidos em 28 furos, cuja distribuição espacial está relacionada à mRock mass classification applied to Volta Grande underground mine site, Nazareno, Minas Geraisalha de seções geológicas selecionadas previamente ao início do trabalho de campo, de maneira a permitir uma adequada caracterização da geologia e da geomecânica em profundidade para a área de estudo. A coleta de dados foi sistematizada fazendo-se o uso de uma planilha específica para obtenção dos parâmetros de classificação. Foram realizadas amostragens em testemunhos de sondagem, por litotipos e graus de alteração, em quantidade suficiente para a realização dos ensaios de caracterização física, de determinação da resistência à compressão puntiforme, compressão uniaxial, compressão triaxial e determinação da velocidade de propagação de ondas, todos realizados de acordo com as metodologias sugeridas pela International Society for Rock Mechanics ISRM. Os resultados destes ensaios foram comparados com os resultados de trabalhos semelhantes encontrados na literatura, a fim de se avaliar sua aplicabilidade. Os resultados da classificação geomecânica mostram que ambos os sistemas representam muito bem os maciços da mina de Volta Grande. No entanto, percebeu-se que o sistema Q é muito mais sensível em relação ao sistema RMR, principalmente nas mudanças de litologia, e essa sensibilidade aumentada para os parâmetros RQD, J n , J r e J a se traduz em resultados que, em alguns intervalos analisados, não se traduzem em ganho significativo em relação à condição geral observada para os maciços. Por isso, recomenda-se a utilização do sistema RMR em detrimento do sistema Q no intuito de diminuir a subdivisão do maciço em pequenas faixas com classes diferentes aumentando a segurança nas decisões uma vez que os resultados do sistema RMR permitiram a individualização, para a maioria dos intervalos, de uma menor subdivisão em faixas com pouca espessura, sendo considerado, por este motivo, o modelo geomecânico mais coerente para etapa de estudos de viabilidade técnica de uma lavra subterrânea. Ressalta- se que as classes de maciço foram definidas em etapa de projeto de viabilidade, não sendo, portanto, sugerida sua utilização na fase de projeto executivo, para o que se necessitaria de uma maior quantidade de dados. Do ponto de vista geotécnico o modelo final da classificação geomecânica dos maciços da mina de Volta Grande demonstra a viabilidade do início de uma lavra subterrânea, o que resultaria em aumento da vida útil da mina e diminuição da geração de estéril; além de fornecer informações iniciais para se inferir sobre tempo de auto-sustentação e tipos de contenção, se necessário, para um possível projeto de lavra subterrânea.
|
298 |
Elastic Wave Propagation and Evaluation of Low Strain Dynamic Properties in Jointed RocksSebastian, Resmi January 2015 (has links) (PDF)
When the point under consideration is not near to the source of vibration, the strains developed in the rock mass due to the passage of waves are usually of small magnitude, and within the elastic range. However, the rock mass may be subjected to a wide range of strain levels depending on the source of vibration and the wave frequency, even within the elastic limit. The present study is based on the two general conditions existing at field, long wave length propagation of waves and intermediate wavelength propagation of waves. When the wavelength of propagating wave is much longer than the joint spacing, it is referred to as long wavelength condition and is associated with propagation of low frequency waves across closely spaced joints. When wavelength of propagating wave is nearly equal to joint spacing, it is known as intermediate wavelength condition and is associated with propagation of high frequency waves. Long wave length propagation of waves has been studied by conducting laboratory experiments using Resonant Column Apparatus on developed plaster gypsum samples. The influence of joint types, joint spacing and joint orientation on wave propagation has been analyzed at three confining stresses under various strain levels. The wave velocities and damping ratios at various strain levels have been obtained and presented. Shear wave velocities are more dependent on confining stress than compression wave velocities across frictional joints whereas, compression wave velocities are more dependent on confining stress than shear wave velocities across filled joints. Wave velocities are at minimum and wave damping is at maximum across horizontal joints whereas wave velocities are at maximum and wave damping is at minimum across vertical joints. Shear wave velocity and shear wave damping are more dependent on joint orientations than compression wave velocity and compression wave damping. As Resonant Column Apparatus has some limitations in testing stiff samples, a validated numerical model has been developed using Discrete Element Method (DEM) that can provide resonant frequencies under torsional and flexural vibrations. It has been found from numerical simulations, that reduction of normal and shear stiffness of joint with increasing strain levels leads to wave velocity reduction in jointed rock mass. Intermediate wave length propagation of waves has been studied by conducting tests using Bender/ extender elements and the numerical simulations developed using 3DEC (Three Dimensional Distinct Element Code).Parametric study on energy transmission, wave velocities and wave amplitudes of shear and compression waves, has been carried out using the validated numerical model. The propagation of waves across multiple parallel joints was simulated and the phenomenon of multiple reflections of waves between joints could be observed. The transformations of obliquely incident waves on the joint have been successfully modeled by separating the transmitted transformed P and S waves. The frequency dependent behavior of jointed rocks has been studied by developing a numerical model and by applying a wide range of wave frequencies. It has been found that low frequency shear waves may involve slips of rock blocks depending on the strength of rock joint, leading to less transmission of energy; while low frequency compression waves are well transmitted across the joints. High frequency shear and compression waves experience multiple reflections and absorptions at joints.
|
299 |
Three-dimensional multi-scale hydraulic fracturing simulation in heterogeneous material using Dual Lattice ModelWong, John Kam-wing January 2018 (has links)
Hydraulic fracturing is a multi-physics multi-scale problem related to natural processes such as the formation of dikes. It also has wide engineering applications such as extraction of unconventional resources, enhanced geothermal energy and carbon capture and storage. Current simulators are highly simplified because of the assumption of homogeneous reservoir. Unconventional reservoirs are heterogeneous owing to the presence of natural fracture network. Because of high computational effort, three-dimensional multi-scale simulations are uncommon, in particular, modelling material as a heterogeneous medium. Lattice Element Method (LEM) is therefore proposed for multi-scale simulation of heterogeneous material. In LEM, material is discretised into cells and their interactions are modelled by lattices, hence a three-dimensional model is simplified to a network of one-dimensional lattice. Normal, shear and rotational springs are used to define the constitutive laws of a lattice. LEM enables desktop computers for simulation of a lattice model that consists of millions of lattices. From simulations, normal springs govern the macroscopic bulk deformation while shear springs govern the macroscopic distortion. There is fluctuation of stresses even under uniform loading which is one of the characteristics of a lattice model. The magnitude increases with the stiffness ratio of shear spring to normal spring. Fracturing process can be modelled by LEM by introducing a microscopic tensile strength and a microscopic shear strength to the lattice properties. The strength parameters can be related to fracture toughness with the length scales of cells. From simulations, the relationships between model parameters and macroscopic parameters that are measurable in experiments are identified. From the simulations of uni-axial tension tests, both the spring stiffness ratio and the applied heterogeneity govern the fracturing process. The heterogeneity increases the ductility at the expense of the reduction on the macroscopic strengths. Different stages of fracturing are identified which are characterised by the model heterogeneity. Heterogeneous models go through the stages of the spatially distributed microscrack formation, the growth of multiple fracture clusters to the dominant fracture propagation. For homogeneous models, one of the microcracks rapidly propagates and becomes a dominant fracture with the absence of intermediate stages. From the uni-axial compression test simulations, the peak compressive stress is reached at the onset of the microscopic shear crack formation. Ductility is governed by the stiffness reduction ratio of a lattice in closed fractured stage to its unfractured stage. A novel Dual Lattice Model (DLM) is proposed for hydraulic fracture simulation by coupling a solid lattice model with a fluid lattice model. From DLM simulations of hydraulic fracturing of the classical penny shape crack problem under hydrostatic condition, the heterogeneities from both the fracture asperity and the applied heterogeneity increase the apparent fracture toughness. A semi-analytical solution is derived to consider the effect of fluid viscosity in the elastic deformation regime. Two asymptotes are identified that gives steep pressure gradients near the injection point and near the fracture tip which are also identified in the DLM simulations. Simulations also show three evolving regimes on energy dissipation/transfer mechanisms: the viscosity dominant, the elastic deformation dominant and the mixture of elastic deformation and toughness.
|
300 |
[en] NUMERICAL ANALYSIS OF THE ROCKFALL PROCESS IN THE SOUTHEAST REGION OF BRAZIL / [pt] ANÁLISE NUMÉRICA DOS PROCESSOS DE QUEDA DE BLOCOS NA REGIÃO SUDESTE DO BRASILFABRICIO VALENTE 06 February 2018 (has links)
[pt] Este trabalho tem como finalidade comparar e analisar diferentes modelos numéricos na análise do processo de queda de blocos com diferentes geometrias, para que seja possível determinar os riscos à infraestrutura e à população local que este evento pode causar. Foram utilizados o software RAMMS e o programa de modelagem PFC3D para simulação de queda de blocos. O primeiro foi desenvolvido pelo instituto suíço WSL, o software utiliza a dinâmica não suave (nonsmooth), não havendo penetração dos blocos com a superfície, e as leis de contato são feitas por restrições. O segundo utiliza o método dos elementos discretos através de dinâmica de contato suave. Na primeira parte do trabalho foram realizadas simulações de casos simples de queda de blocos para ambos os modelos, a fim de analisar o principal parâmetro do contato rocha-solo de cada programa com o alcance das rochas. O modelo de contato no programa PFC3D utilizado foi o método linear, e depois foi adicionada uma força de resistência ao rolamento para que o modelo conseguisse reproduzir o comportamento de solos mais macios. Os modelos foram simulados para casos reais, primeiro foram aplicados para uma encosta na BR116, onde um evento de deslizamento já tinha ocorrido. Foram realizadas simulações com os dois modelos na região, comparando-os e analisando com os vestígios deixados pelo evento. Outro caso estudado foi o de blocos susceptíveis ao deslizamento no bairro Glória, no município de Petrópolis. E por último, foram criados modelos para analisar o comportamento da vegetação em ambos os modelos. Com os resultados obtidos, conclui-se que o PFC3D consegue simular o processo de queda com melhor precisão através do auxílio da força de resistência ao rolamento. Para ambas simulações, o caso da BR116 e o do bairro Glória, os modelos apresentarem uma mesma tendência quanto a trajetória do bloco, mas melhorias na calibração do modelo linear com resistência ao rolamento precisam ser realizadas para que melhores resultados sejam obtidos. A presença de vegetação se mostrou como um mecanismo muito eficiente para perdas de energia
no sistema, diminuindo significativamente a velocidade dos blocos. / [en] The aim of this work is to compare and analyze different numerical models on the rockfall process with different geometries, to determine the risks to the local infrastructure and population. It was used the software RAMMS and the modeling program PFC3D to simulate rockfall events. The first software was developed by the Swiss institute WSL, it uses the nonsmooth dynamics system, it is a dynamic
behavior where there is no penetration between the rock and the surface and the contact laws are created by restrictions laws. And the second one uses the discrete element method applying the smooth dynamics system to simulate the event. On the first part of the work, numerical models were created on both models to simulate simple cases of rockfall events, to compare the main soil-rock parameter of both modeling program with the distance reached of the rocks. The contact model used on the PFC3D program was the linear method, and after the first simulations was added a rolling resistance force to the model reproduce soft. Both models were applied to real cases, the BR116 was the first case modeled, where some natural hazards have already happened. The results of the numerical simulations were compared and analyzed. It was also created a model to simulate the rockfall event of the Gloria neighborhood, in Petropolis; rocks that could fall were determined and simulations for those blocks were performed, the deposition area and the blocks trajectory of each model were examined. And finally, it was studied the vegetation effect of each model and its particularities. Through the results, it is possible to conclude that the PFC3D can simulate the rockfall process with better accuracy using the rolling resistance method. For both simulation, the BR116 and the Gloria neighborhood, the models showed the same tendency of the blocks trajectory, but it is necessary to improve the calibration of the rolling resistance coefficient. The existence of the vegetation revealed as a very effect lose energy mechanism on the system, decreasing significantly the velocity of the blocks.
|
Page generated in 0.0786 seconds