• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 14
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 68
  • 68
  • 20
  • 16
  • 16
  • 12
  • 11
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sistema radicular de cana-de-açúcar e identificação de raízes metabolicamente ativas. / Sugar cane root system and identification of roots with active metabolism.

Carlos Eduardo Faroni 13 January 2005 (has links)
O conhecimento da dinâmica de crescimento das raízes da cana-de-açúcar, bem como da arquitetura de seu sistema radicular, permite melhor compreensão das relações entre a planta e o seu ambiente de produção, possibilitando o manejo a partir de práticas agrícolas mais eficientes e sustentáveis que resultem em aumento de produtividade e longevidade da cultura. O presente estudo teve por objetivo desenvolver um método para determinação da distribuição e do desenvolvimento de raízes metabolicamente ativas de cana-de-açúcar no solo, por meio da técnica da diluição do isótopo 15N, associado aos métodos de amostragem com monólito e sonda amostradora de raízes. O experimento foi realizado em área comercial de cana-de-açúcar na região canavieira de Piracicaba, Estado de São Paulo, em LATOSSOLO VERMELHO distrófico arenoso, com uma segunda rebrota do cultivar RB85 5156. O delineamento experimental foi em blocos subdivididos no tempo, com as amostragens de raízes realizadas a cada 50 a 60 dias de janeiro a junho de 2004. A uréia foi o veículo de fornecimento do marcador isotópico 15N, por meio de solução aplicada às folhas das plantas. Após colheita da parte aérea, realizada 96 horas após a aplicação da solução de uréia, foram abertas trincheiras, transversalmente à linha da cultura, com dimensões de 1 m de comprimento e 1,4 m de largura. Amostras foram colhidas por meio de monólito nas profundidades de 0 a 20, 20 a 40, 40 a 60 e 60 a 80 cm, na projeção da linha da cultura e lateralmente nas distâncias de 14 a 42 cm e de 42 a 70 cm da linha da cultura. Outras amostras foram colhidas com sonda amostradora de raízes, paralelamente à parede interna das trincheiras, a 10 cm de distância do local onde foram retirados os monólitos, nas mesmas profundidades e nas distâncias de 28 e 56 cm da linha. Em cada profundidade de amostragem, e na projeção da linha da cultura, foram separadas amostras de raízes visualmente ativas. Estas amostras forma consideradas padrão para a determinação por diluição isotópica de raízes com metabolismo ativo. As determinações do teor de N e de abundância de 15N em amostras de planta e de solo foram realizadas em um espectrômetro de massas modelo ANCA-SL da Eurapa Scientific Ltda. Os resultados mostraram que o método da diluição isotópica com 15N possibilitou avaliar a massa de raízes com metabolismo ativo e sua distribuição no solo, e o método de amostragem de raízes com a sonda foi viável em comparação com a amostragem do monólito, nas seguintes condições: na quantificação de raízes nas profundidades de 0 a 20, 20 a 40 e 60 a 80 cm do perfil do solo para raízes totais, e nos 20 cm superficiais do solo, profundidade na qual a massa de raízes foi maior, para raízes metabolicamente ativas. / Knowledge about of sugarcane root growth dynamic, as well as the root system architecture of sugarcane crop allows understanding better the relationships between the plant and its environment. This knowledge is important to define the crop management with most efficiency and using sustainable practices, to increasing both sugarcane crop yield and longevity. The aim of this study was to evaluate a method in order to determine sugarcane roots with active metabolism and its distribution and growth in the soil profile, by using isotopic dilution technique with 15N associated with sampling by monolite and probe. The experiment was conducted in the sugarcane field, on the region of Piracicaba, State of São Paulo, Brazil, by using the second rattoon of the variety RB 85 5156, grown in a Rhodic Hapludox. The experimental design was in randomized blocks, with four replications. The split plot was considered in relation to the time. The 15N tracer was applied in the plants as urea solution. The above ground part of sugarcane plants were harvested 96 hours after urea solution applications, and trenches with one meter of length and 1.4 meter width were opened transversely to sugarcane rows. Samples were taken by monolite in 0-20, 20-40, 40-60 and 60-80 cm of depth in the soil profile in the row projection and horizontally in the distances of 14 to 42 and 42 to 70 cm from the cane row. Samples were taken by probe in a parallel plan with the internal trench wall at 10 cm of distance from the spot where monolites were collected, in the same depths and at 28 and 56 cm from the row. Roots visually assumed as metabolisms active were separated to each sampling depth and to row lateral projection and were considered standards to determine active roots. Determinations of N contents and 15N abundance in both plant and soil were carried on a mass spectrometer model ANCA-SL (Europa Scientific Ltda.). The results showed the isotopic dilution method with 15N allowed the evaluation of active roots mass and the root distribution in the soil. The root sampling method with probe was adequate comparing with root sampling by monolite in trench to quantify roots, in the following conditions: in the soil depths of 0 to 20, 20 to 40 and 60 to 80 cm to total roots; and in the first 20 cm of depth, where the root mass was higher to active roots.
32

Cálcio e boro aliviam a toxidez por H+ e Al3+ e suprimem a indução de guaiacol peroxidase em raízes do cultivar Micro-Tom de tomateiro (Solanum lycopersicum L.): possível envolvimento da parede celular / Calcium and boron alleviate H+ and Al3+ toxicity and suppress the induction of guaiacol peroxidase in roots of Micro-Tom cultivar of tomato (Solanum lycopersicum L.): possible involvement of the cell wall

Lucas Diego Figueiredo 02 August 2013 (has links)
Solos ácidos cobrem cerca de 30% das áreas agricultáveis do mundo. Nestes solos, geralmente ocorrem baixas concentrações de cátions como cálcio e magnésio, enquanto a acidez (pH <5,5) promove a solubilização de Al3+. A exposição de raízes a pH ácido e/ou ao Al3+ inibe o crescimento radicular, reduz a viabilidade de células do ápice, promove estresse oxidativo, e pode causar desarranjos na parede celular. Na parede, é provável que tanto o H+ como o Al3+ atuem sobre a pectina, comprometendo a sua estrutura e funcionalidade. Por outro lado, peroxidases classe III (GPOX) parecem desempenhar um papel central nas modificações da parede celular, são induzidas por H+ e Al3+ e algumas isoformas são associadas à pectina. O objetivo deste trabalho foi caracterizar as respostas radiculares da cultivar Micro-Tom de tomateiro (Solanum lycopersicum L.) à toxidez por H+ e Al3+ e avaliar a capacidade do cálcio e do boro em aliviar esta toxidez com relação à inibição do crescimento radicular, queda na viabilidade celular e alterações na atividade de GPOX. Em raízes expostas a pH 4,0, após 30 min já foi possível observar a redução na viabilidade de células do ápice, avaliada através da absorção de azul de Evans. Observou-se elevação significativa na atividade de GPOX após 2 h de tratamento a pH 4,0. Apesar da defasagem na sua indução em relação à queda na viabilidade celular, a atividade de GPOX parece ser um melhor indicador da ação de H+. O uso do inibidor da GPOX (SHAM; ácido salicilhidroxâmico) indicou que estas enzimas desempenham um papel no sentido de impedir maiores danos às células por pH baixo. O cálcio (10 mM) aliviou totalmente a toxidez por H+ (pH 4,0 e 4,5) e Al3+ (10 ?M) em relação a crescimento radicular e viabilidade celular. O boro (30 ?M) aliviou totalmente a toxidez por H+ e Al3+ em relação a viabilidade celular, mas aliviou apenas parcialmente ou em nada a inibição do crescimento radicular por H+ ou Al3+, respectivamente. Tanto o cálcio quanto o boro suprimiram totalmente a indução da atividade de GPOX. O cálcio e o boro apresentaram interação positiva sobre o crescimento radicular a pH 5,8 e 4,5, mas não na presença de Al3+ e nem em relação à viabilidade celular ou atividade de GPOX. De modo geral, encontrou-se boa correlação entre viabilidade celular e atividade de GPOX. Tomado no seu conjunto, os dados evidenciam um papel importante de GPOX na toxidez por H+ e Al3+ e sugerem que, apesar de distintos, a toxidez por estes íons possivelmente apresentam alguns aspectos e mecanismos em comum. Também corroboram outros trabalhos que evidenciam a ação destes íons sobre a parede celular, em particular a matriz péctica. Estudos futuros deverão examinar se a GPOX que é induzida por H+ e Al3+ está associada à pectina da parede. / Acid soils cover about 30% of the arable land in the world. These soils usually have low concentrations of cations, such as calcium and magnesium, whereas the low pH (pH <5.5) increases the solubility of Al3+. Exposure of roots to low pH and/or Al3+ inhibits root growth, reduces cell viability of the root apex, promotes oxidative stress, and can cause derrangements in the cell wall. It is likely that both H+ and Al3+ act on pectin of the cell wall, affecting its structure and functionality. On the other hand, class III peroxidases (GPOX) appear to play a role in modifications of the cell wall, are induced by H+ and Al3+ and some isoforms are associated with pectin. The aim of this study was to characterize the responses of roots of the Micro-Tom cultivar of tomato (Solanum lycopersicum L.) to the toxicity of H+ and Al3+ and evaluate the ability of calcium and boron to alleviate this toxicity with respect to inhibition of root growth, decrease in cell viability and changes in the activity of GPOX. In roots exposed to pH 4.0, after 30 min it was already possible to observe a decrease in cell viability at the apex, as assessed by the uptake of Evans blue. We observed a significant increase in GPOX activity after 2 h of treatment at pH 4.0. Despite the lag in their induction in relation to the decrease in cell viability, GPOX activity seems to be a better indicator of the action of H+. The use of inhibitors of GPOX activity indicates that these enzymes play a role in preventing further damage to cells by low pH. Calcium (10 mM) completely alleviated H+ (pH 4.0 or 4.5) and Al3+ (10 mM) toxicity with respect to root growth and cell viability. Boron (30 mM) completely alleviated H+ and Al3+ toxicity with respect to cell viability, but only partly alleviated or had no effect on the inhibition of root growth by H+ or Al3+, respectively. Both calcium and boron completely suppressed the induction of GPOX activity. Calcium and boron displayed a positive interactive effect on root growth at pH 5.8 and 4.5, but not in the presence of Al3+ and not in relation to cell viability or GPOX activity. In general, good correlations were found between cell viability and GPOX activity. Taken together, the data indicate a significant role of GPOX activity in the toxicity of H+ and Al3+ and suggest that although different, the toxicity of these ions possibly share some common aspects and mechanisms. The data also corroborates other studies that indicate the cell wall as a target of toxicity, particularly the pectic matrix. Further studies should examine whether GPOX activity, which is induced by H+ and Al3+ is associated with pectin in the wall.
33

A inibição do crescimento radicular pelo peptídeo hormonal AtRALF1 é dependente da interação com a proteína AtCML38, uma proteína secretada semelhante a calmodulina / Root growth inhibition by peptide hormone AtRALF1 is dependent of the interaction with the AtCML38, a secreted calmodulin-like protein

Wellington Ferreira Campos 26 August 2013 (has links)
O fator de alcalinização rápida ou RALF (do inglês, Rapid ALkalinization Factor) é um peptídeo hormonal ubíquo que induz a atividade de uma MAP quinase, bem como um aumento rápido do pH extracelular do meio de cultura de células em suspensão. O AtRALF1, uma das 37 isoformas de RALF presentes em Arabidopsis thaliana, é um peptídeo secretado de 5 kDa, que inibe o crescimento radicular e causa uma rápida mobilização de Ca2+ extra e intracelular. Em células eucarióticas, calmodulinas são proteínas bem caracterizadas por mediar a transdução de sinais de Ca2+ intracelular. Entretanto, em várias espécies vegetais incluindo Arabidopsis, também existem relatos de calmodulinas secretadas com funções ainda desconhecidas. Neste trabalho, foi caracterizada a AtCML38, uma proteína de Arabidopsis semelhante a calmodulina e que interage com o peptídeo AtRALF1. Análises in silico e por RT-PCR semi-quantitativo mostram a co-expressão de ambos os genes AtRALF1 e AtCML38 em raízes de plântulas de Arabidopsis. Apesar da ausência de um peptídeo sinal típico na proteína AtCML38, a localização sub-celular demonstra que esta é secretada através da via secretória RE-Golgi. O uso de uma versão truncada da AtCML38, cujos 87 primeiros aminoácidos foram retirados, indicou que o N-terminal é essencial para o seu direcionamento. Por meio de ensaios de complementação fluorescente bimolecular, foi demonstrado que AtCML38 interage com AtRALF1 no apoplasto de folhas de tabaco. Ensaios de pulldown indicam que esta interação é específica e dependente de Ca2+ e do pH. Um mutante por inserção de T-DNA, que não produz a proteína AtCML38 (cml38), mostrou-se insensível ao peptídeo AtRALF1 aplicado exogenamente, e suas raízes cresceram normalmente. Plantas transgênicas de Arabidopsis super-expressando o gene AtRALF1 (35S:AtRALF1) têm um fenótipo semi-anão com pronunciada redução do crescimento radicular. Contudo, quando plantas 35S:AtRALF1 foram cruzadas com o mutante cml38, suas progênies exibiram fenótipo e crescimento radicular normais, apesar do acúmulo do peptídeo AtRALF1. Juntos, os resultados mostram que AtCML38 interage com o peptídeo hormonal AtRALF1, e que a proteína AtCML38 é essencial para inibição do crescimento radicular causado pelo peptídeo. / Rapid alkalinization factor (RALF) is a ubiquitous peptide hormone that induces a MAP kinase and a rapid increase in the pH of the extracellular media of cell suspension cultures. AtRALF1, one of the 37 RALF isoforms of Arabidopsis thaliana, is a secreted peptide of 5 kDa that inhibits root growth and causes a rapid mobilization of extra and intracellular Ca2+. In eukaryotic cells, calmodulin proteins are well-characterized to mediate intracellular Ca2+ signal transduction. Nevertheless, in several plant species including Arabidopsis, there are also reports of calmodulins being secreted with still unknown function. In this work, we characterized the AtCML38, a calmodulin-like protein from Arabidopsis as an AtRALF1-interacting protein. Analyses in silico and semiquantitative RT-PCR show co-expression of both AtCML38 and AtRALF1 genes in roots of Arabidopsis seedlings. Despite the fact that AtCML38 lacks a typical signal peptide, subcellular localization demonstrates that AtCML38 is secreted via the ER-Golgi secretory pathway. A truncated AtCML38, without the first 87 amino acids indicates that the N-terminal is essential for targeting. Through bimolecular fluorescence complementation assays, we showed that AtCML38 protein interacts with AtRALF1 in the apoplast of epidermal cells from tobacco leaves. Pull down assays indicate that this interaction is specific, Ca2+- and pH-dependent. A T-DNA insertion mutant defective in the AtCML38 protein (cml38) was insensitive to exogenously applied AtRALF1 peptide and their roots grow just as the wild type plants. Transgenic Arabidopsis plants overexpressing the AtRALF1 gene (35S:AtRALF1) have a semi-dwarf phenotype with a pronounced reduction in the root growth. However, when 35S:AtRALF1 plants are crossed with the mutant cml38, their progenies are normal looking and exhibit normal root growth in spite of the high accumulation of AtRALF1 peptide. Taken together, the results show that AtCML38 interacts with the peptide hormone AtRALF1 and that the protein AtCML38 is essential for the root growth inhibition caused by the peptide.
34

Interação do AtRALF1 com o receptor quinase1 associado ao BRI1 (BAK1) / Interaction of AtRALF1 with the BRI1-associated receptor kinase1 (BAK1)

Keini Dressano 18 May 2015 (has links)
Os peptídeos hormonais vegetais, que vêm sendo caracterizados em plantas desde a década de 90, podem estar relacionados com defesa, reprodução, crescimento e desenvolvimento de plantas. O peptídeo RALF (Rapid Alkalinization Factor), ubíquo no reino vegetal, está envolvido com o desenvolvimento de plantas. Em arabidopsis há 37 genes que codificam peptídeos RALF (AtRALFs). A isoforma mais estudada é a AtRALF1, a qual regula de maneira negativa a expansão celular, inibindo o crescimento de raiz primária e o alongamento de hipocótilo quando aplicado exogenamente. Recentemente, demonstrou-se a existência de uma relação antagônica entre AtRALF1 e a via de brassinosteróides (BRs) no desenvolvimento de raízes. Quando mutantes da via de sinalização do BR foram avaliados quanto a sua resposta ao peptídeo AtRALF1, descobriu-se que mutantes para o receptor quinase1 associado ao BRI1 (bak1) são insensíveis a AtRALF1. Experimentos utilizando o sistema de duplo híbrido em levedura, a co-imunoprecipitação e a indução de genes marcadores em mutantes bak1 foram realizados e confirmaram o envolvimento da proteína BAK1 na percepção do peptídeo. Plantas transgênicas que superexpressam AtRALF1 apresentam um fenótipo semi-anão, no entanto, quando as mesmas foram cruzadas com o mutante bak1, suas progênies apresentaram um fenótipo similar ao de plantas selvagens. Ainda, quando plantas deste cruzamento foram novamente cruzadas com plantas selvagens, plantas com fenótipo semi-anão foram observadas na prole. Ensaios de ligação usando o peptídeo AtRALF1 marcado com éster de acridínio foram realizados e mostraram que em mutantes bak1, a ligação do AtRALF1 é menor em aproximadamente 30% quando comparada com plantas selvagens. Os dados obtidos mostram que a proteína BAK1 interage fisicamente com o AtRALF1, está envolvida na percepção do peptídeo, é essencial para a inibição do crescimento da raiz primária causada pelo AtRALF1 e é necessária para a indução dos genes responsivos ao AtRALF1. / The plant peptides, which have been characterized in plants since the 90\'s, can be related to defense, reproduction, growth and development of plants. The RALF (Rapid Alkalinization Factor) peptide, ubiquitous in the plant kingdom, is related to the development of plants. In arabidopsis plants, there are 37 genes encoding RALF peptides (AtRALFs). AtRALF1 is the most studied isoform, which negatively regulate cell expansion, inhibiting primary root growth and hypocotyl elongation when it is applied exogenously. Recently, an antagonistic relationship between AtRALF1 and the brassinosteroids (BRs) to control root development had been demonstrated. When the response of mutants related to the BR signaling pathway to AtRALF1 peptide was investigated, it was found that mutants lacking the BRI1-associated receptor kinase1 (bak1) are insensitive to AtRALF1. Experiments using the two-hybrid system in yeast, co-immunoprecipitation, and the induction of marker genes in bak1 mutants were carried out, and confirmed the involvement of the BAK1 protein in the perception of AtRALF1 peptide. Transgenic plants overexpressing AtRALF1 are semi-dwarf. However, when those transgenic plants were crossed with bak1 mutant, their progeny showed a wild-type phenotype. Besides, when plants from this progeny were crossed again with wild-type plants, semi-dwarf phenotype plants were obtained in the offspring. Binding assays using AtRALF1 labeled with acridinium-ester were performed, and showed that in bak1 mutants, the AtRALF1 binding was reduced approximately 30% when compared to wild-type plants. All data indicate that BAK1 protein interacts physically with AtRALF1, it\'s involved with the peptide perception, essential for the primary root growth inhibition caused by AtRALF1, and required to the induction of genes responsive to AtRALF1.
35

Croissance racinaire en verger de pêchers - Influence de la disponibilité en assimilats carbonés et des contraintes du sol / Root growth in peach orchard - Effects of carbohydrates availability and of soil properties

Bécel, Carole 29 June 2010 (has links)
L’arboriculture en milieu méditerranéen nécessite un apport d’eau via l’irrigation important, notamment pendant la période estivale. Pour améliorer l’efficience d’utilisation de l’eau, il convient de mieux connaître les besoins en eau de l’arbre et les zones d’exploration et d’exploitation des racines. La croissance des racines varie dans le temps et dans l’espace en lien avec des facteurs endogènes, en particulier la disponibilité en assimilats carbonés, et des facteurs exogènes comme les propriétés du sol. Ces facteurs sont modulés par les pratiques culturales, et en particulier l’irrigation, le compactage du sol et l’éclaircissage, qui affectent la croissance racinaire, et d’une manière générale le fonctionnement global de l’arbre. La dynamique de croissance des racines est ponctuée par deux périodes de croissance intense. La première période de croissance intense se situe tôt dans la saison, en avril-mai, pendant la phase de durcissement du noyau des fruits. En début de saison la demande en carbone à l’échelle de l’arbre est importante (forte croissance des feuilles, fruits, rameaux, racines) et nécessite la mobilisation intense des réserves carbonées présentent sous forme d’amidon. La charge en fruits affecte la croissance des racines et des fruits, et la restriction hydrique affecte surtout la croissance de la partie aérienne. La deuxième période de croissance racinaire intense intervient après la récolte en juillet-août, quand les feuilles et les rameaux ont finis leur croissance. La compétition est moins forte et l’amidon s’accumule, surtout chez les arbres sous restriction hydrique. L’accumulation d’amidon résulte d’une plus grande sensibilité de la croissance au déficit hydrique que la photosynthèse. Pendant les périodes de croissances racinaires intenses, le diamètre apical et la longueur de leur zone apicale non ramifiée des racines sont augmentés, ainsi que les teneurs en sucres solubles dans les pointes racinaires. Les paramètres architecturaux racinaires et les teneurs en sucres solubles dans les pointes racinaires sont de bons indicateurs de la dynamique de croissance racinaire. La répartition des racines au verger est très variable et dépend des propriétés du sol. Les racines des arbres bien alimentés en eau ont colonisé surtout les volumes de sol sous le rang des arbres (proches des goutteurs) jusqu’à 1 m de profondeur. Au contraire les racines des arbres sous-alimentés en eau ont colonisé surtout les 50 cm en profondeur sous le rang et vers l’inter-rang. Les racines se sont réparties dans les zones les moins contraignantes pour leur croissance, qui sont plus restreintes quand l’irrigation est restrictive. En conditions non contraignantes, de par une faible densité de sol ou une forte teneur en eau, la vitesse de croissance, et notamment des grosses racines, est forte. Par contre, les fines racines ont une vitesse de pénétration des sols contraignants plus rapide. La contrainte mécanique entraîne aussi une baisse de la hiérarchisation des systèmes racinaires, les racines latérales seront davantage ramifiées / Fruit tree production in Mediterranean climate needs water supply via irrigation, particularly during summer. To improve water use efficiency, it is necessary to better understand the water need of tree and to localize soil volumes colonized by roots. Root growth varies in time and space following endogenous factors, like carbohydrate availability, and exogenous factors like soil properties. These factors are affected by cultural practices and particularly by irrigation, soil compaction and thinning. Root growth dynamics is marked by two intensive root growth periods. The first period of intensive root growth occurs early in the season, in April-May, during the phase of stone hardening of fruit. Early in the season, carbohydrates demand at tree scale is high (leaves, fruits, shoots, roots are growing) and leads to an intense mobilization of starch reserve. Crop load affects root and fruit growth, and the deficit irrigation affects principally the aerial growth. The second period of intensive root growth occurs after the fruit harvest in July-August, when leaves and shoot stopped their growth. Competition for carbohydrates is reduced and starch contents rise, particularly in trees submitted to deficit irrigation. Starch accumulation traduces a higher sensibility of growth than photosynthesis under deficit irrigation. During intensive root growth periods, apical diameter and the length of apical unbranched zone are increased, and water soluble carbohydrates contents in root tips too. Root architectural parameters and water soluble carbohydrates contents are good indicators of root growth dynamics. Root distribution in orchard is variable and depends of soil properties. Roots of wellirrigated trees colonized especially soil volumes in the row (under drippers) until 1 m in depth. On the opposite, root of trees submitted to deficit irrigation colonized the first 50 cm in depth, both in the row and the inter-row. Root colonized soil volumes where soil mechanical resistance was the lowest, and these soil volumes are more reduced in deficit irrigation. Low soil mechanical resistance, with low bulk density and high water content, allows a higher root elongation and particularly for thick roots. On the opposite, fine roots have a higher elongation in strength soil than thick roots. The soil mechanical resistance leads to reduce the root system hierarchy; lateral roots were more branched
36

The hidden life of plants : fine root dynamics in northern ecosystems

Blume-Werry, Gesche January 2016 (has links)
Fine roots constitute a large part of the primary production in northern (arctic and boreal) ecosystems, and are key players in ecosystem fluxes of water, nutrients and carbon. Data on root dynamics are generally rare, especially so in northern ecosystems. However, those ecosystems undergo the most rapid climatic changes on the planet and a profound understanding of form, function and dynamics of roots in such ecosystems is essential. This thesis aimed to advance our knowledge about fine root dynamics in northern ecosystems, with a focus on fine root phenology in natural plant communities and how climate change might alter it. Factors considered included thickness and duration of snow cover, thawing of permafrost, as well as natural gradients in temperature. Experiments and observational studies were located around Abisko (68°21' N, 18°45' E), and in a boreal forest close to Vindeln (64°14'N, 19°46'E), northern Sweden. Root responses included root growth, total root length, and root litter input, always involving seasonal changes therein, measured with minirhizotrons. Root biomass was also determined with destructive soil sampling. Additionally, aboveground response parameters, such as phenology and growth, and environmental parameters, such as air and soil temperatures, were assessed. This thesis reveals that aboveground patterns or responses cannot be directly translated belowground and urges a decoupling of above- and belowground phenology in terrestrial biosphere models. Specifically, root growth occurred outside of the photosynthetically active period of tundra plants. Moreover, patterns observed in arctic and boreal ecosystems diverged from those of temperate systems, and models including root parameters may thus need specific parameterization for northern ecosystems. In addition, this thesis showed that plant communities differ in root properties, and that changes in plant community compositions can thus induce changes in root dynamics and functioning. This underlines the importance of a thorough understanding of root dynamics in different plant community types in order to understand and predict how changes in plant communities in response to climate change will translate into root dynamics. Overall, this thesis describes root dynamics in response to a variety of factors, because a deeper knowledge about root dynamics will enable a better understanding of ecosystem processes, as well as improve model prediction of how northern ecosystems will respond to climate change.
37

The hidden life of plants : fine root dynamics in northern ecosystems

Blume-Werry, Gesche January 2016 (has links)
Fine roots constitute a large part of the primary production in northern (arctic and boreal) ecosystems, and are key players in ecosystem fluxes of water, nutrients and carbon. Data on root dynamics are generally rare, especially so in northern ecosystems. However, those ecosystems undergo the most rapid climatic changes on the planet and a profound understanding of form, function and dynamics of roots in such ecosystems is essential. This thesis aimed to advance our knowledge about fine root dynamics in northern ecosystems, with a focus on fine root phenology in natural plant communities and how climate change might alter it. Factors considered included thickness and duration of snow cover, thawing of permafrost, as well as natural gradients in temperature. Experiments and observational studies were located around Abisko (68°21' N, 18°45' E), and in a boreal forest close to Vindeln (64°14'N, 19°46'E), northern Sweden. Root responses included root growth, total root length, and root litter input, always involving seasonal changes therein, measured with minirhizotrons. Root biomass was also determined with destructive soil sampling. Additionally, aboveground response parameters, such as phenology and growth, and environmental parameters, such as air and soil temperatures, were assessed. This thesis reveals that aboveground patterns or responses cannot be directly translated belowground and urges a decoupling of above- and belowground phenology in terrestrial biosphere models. Specifically, root growth occurred outside of the photosynthetically active period of tundra plants. Moreover, patterns observed in arctic and boreal ecosystems diverged from those of temperate systems, and models including root parameters may thus need specific parameterization for northern ecosystems. In addition, this thesis showed that plant communities differ in root properties, and that changes in plant community compositions can thus induce changes in root dynamics and functioning. This underlines the importance of a thorough understanding of root dynamics in different plant community types in order to understand and predict how changes in plant communities in response to climate change will translate into root dynamics. Overall, this thesis describes root dynamics in response to a variety of factors, because a deeper knowledge about root dynamics will enable a better understanding of ecosystem processes, as well as improve model prediction of how northern ecosystems will respond to climate change.
38

Progression de la racine primaire d'Arabidopsis thaliana en réponse à des variations de contraintes mécaniques de son substrat / Penetration of the Arabidopsis thaliana primary root in response to variations in growth medium strength

Roué, Juliette 19 December 2018 (has links)
Le comportement mécanique d’un sol constitue un des facteurs prépondérants affectant la croissance et le développement racinaire. L’augmentation de la résistance mécanique d’un sol affecte l’architecture du système racinaire, la croissance axiale et radiale des racines, et l’orientation de la croissance. Bien que ces réponses soient décrites sur diverses espèces végétales dans la littérature, leur mise en place et les mécanismes de signalisation sous-jacents restent à ce jour méconnus. L’objectif principal de cette thèse est d’étudier la mise en place des réponses des racines primaires d’Arabidopsis thaliana à des variations de contraintes mécaniques de son substrat. La littérature fait état jusqu’ici de deux voies de signalisation mécanique possibles, l’une impliquant une mécanoperception au niveau de la coiffe racinaire, et l’autre faisant intervenir entres autres l’activation de canaux mécano-sensibles au niveau de l’apex racinaire. Pour étudier leur implication respective, nous avons caractérisé les réponses à une augmentation des contraintes mécaniques de racines primaires issues de la lignée Arabidopsis thaliana sauvage et de lignées mutantes affectées au niveau de l’organisation de la coiffe (fez-2, smb-3, brn1-1 brn2-1) ou au niveau de canaux ioniques mécanosensibles (mca1-null, mslΔ5). Nous avons développé un système expérimental original basé sur le suivi de croissance et d’orientation des racines dans des milieux de culture à base de Phytagel. Ces milieux de culture permettent de mimer d’une part une augmentation à long terme et simultanée des contraintes mécaniques axiales, radiales et des frottements et d’autre part une augmentation à court terme des contraintes mécaniques axiales. Tout d’abord, nous avons observé que la mise en place des réponses de croissance des racines primaires d’Arabidopsis thaliana à ces augmentations de contraintes mécaniques reposait sur une interaction entre des processus mécaniques (flambement) et biologiques (régulations de la zone de croissance). Ensuite, nous avons mis en évidence que la coiffe racinaire participait à la mise en place des réponses des racines d’Arabidopsis thaliana face à une augmentation des contraintes mécaniques. Nos résultats suggèrent que la coiffe pourrait constituer un siège de la mécanoperception. Par ailleurs, nos résultats sur les lignées mca1-null et mslΔ5 suggèrent que les canaux ioniques MCA1 et MSLs participeraient également à la mise en place des réponses racinaires à l’augmentation des contraintes mécaniques. / Root growth and development are highly modulated by soil mechanical properties such as texture, structure and bulk density. Increases in soil penetration resistance affect root system architecture, root cell production and elongation, root diameter, and root tip orientation. Although root responses to changes in mechanical stresses are well described in several plant species, their establishment and the signaling pathways underlying these responses remains misunderstood. The main objective of this thesis is to study the establishment of Arabidopsis thaliana primary root responses to changes in mechanical stresses. So far, studies reported two distinct putative mechanical signaling pathways involving either (i) the root cap as a main mechanosensing site or (ii) the activity of stretch-activated ion channels localized on the cell plasma membranes along the root apex. According to previous studies, we studied the implication of the root cap and of the stretch-activated channels of the MCA and MSL families in the root responses to increases in mechanical stresses. We developed an original experimental set-up based on the monitoring of growth and orientation of Arabidopsis thaliana primary roots in one-layer and two-layer Phytagel based growth media. The one-layer growth media mimicked a long-term increase in frictions and in radial and axial mechanical stresses whereas the two-layer growth media mimicked a short-term increase in axial mechanical stresses. We characterized penetration abilities, growth rate and tip orientation of Arabidopsis thaliana wild type roots (Col-0) and mutant roots showing defects in root cap organization (fez-2, smb-3, brn1-1 brn2-1) or in stretch-activated ion channels activity (mca1-null, mslΔ5) in one-layer and two-layer media. Firstly, we observed that the establishment of root growth responses to increases in mechanical stresses involved both mechanical (buckling) and biological (growth zone modulations) mechanisms. Then, our experiments demonstrated that alterations in root cap organization led to altered root growth responses to increases in mechanical stresses. Our results suggest that the root cap acts as a mechanosensing site. Moreover, the results obtained with the mca1-null and mslΔ5 Arabidopsis lines suggest that the MCA1 and MSLs ion channels also participate in the establishment of root responses to increases in mechanical stresses.
39

Aliviação do estresse por baixo pH na raíz do cultivar Micro-Tom de tomateiro via exposição gradual ou tratamento hipo-osmótico prévio: possível papel de modificações na parede celular / Alleviation of low pH stress in roots of Micro-Tom cultivar of tomato by gradual exposure or hypo-osmotic pre-treatment: possible role of modifications in the cell wall

Graças, Jonathas Pereira das 26 April 2013 (has links)
Os solos ácidos (pH < 5,0) representam cerca de 40 % das áreas agricultáveis no mundo. Nestes solos ocorre a solubilização de formas tóxicas de alumínio que inibe o crescimento radicular. Independente da presença do Al, o baixo pH pode ser tóxico à raiz, afetando a viabilidade celular no ápice e o crescimento radicular. Há evidências de que o estresse por H+ e/ou Al³+ afetam a parede celular. Por outro lado, modificações na parede podem determinar o grau de tolerância da planta quando submetidos a estes estresses. Assim, utilizou-se de duas abordagens para investigar se possíveis modificações na parede celular melhorariam o crescimento e viabilidade celular na exposição a H+ e Al³+. Na primeira, raízes de plantas do cultivar Micro-Tom (MT) de tomateiro (Solanum lycopersicum L.), com 2 e 13 dias de desenvolvimento, foram expostas de forma direta ou gradual ao baixo pH. Na segunda abordagem, as raízes foram submetidos a um tratamento hipo-osmótico antes de serem expostas a pH 4,0 ou 4,5 + Al. Em plantas com 2 e 13 dias, a exposição gradual foi realizada alterando o pH ao longo de 12 e 24 h, respectivamente. No tratamento hipo-osmótico (priming), as plantas foram transferidas de uma solução de alta osmolaridade (150 mM) para uma com baixa osmolaridade (0,5 mM), a pH 5,8, por 0; 0,5; 1 e 2 h antes de serem expostas a pH 4,0 ou 4,5 + Al por 12h. Como controles, raízes não receberam tratamento osmótico ou foram mantidas continuamente em alta osmolaridade. O crescimento de raízes expostas diretamente a pH 4,5 foi cerca de metade do controle a pH 5,8 e a pH 4,0 foi nulo. Ao contrário do esperado, na exposição gradual a pH 4,5, as raízes cresceram menos do que aquelas expostas diretamente a este pH e a pH 4,0 o crescimento continuou insignificante. No entanto, raízes expostas gradualmente ao pH 4,0 mantiveram a viabilidade das células do ápice, ao contrário daquelas expostas diretamente. Assim, a redução do crescimento radicular pela exposição a baixo pH pode ser uma resposta gerada pela própria planta, não sendo necessariamente decorrente da ação direta do pH. O priming hipo-osmótico antes da exposição a pH 4,0 permitiu a manutenção da viabilidade celular e um crescimento radicular de até 38% das raízes controle a pH 5,8, enquanto que nos controles a pH 4,0 as células morreram e o crescimento foi praticamente nulo. Em pH 4,5 + 5 ?M de Al o priming não reverteu a inibição do crescimento radicular, indicando que as respostas para H+ e Al³+ são diferentes. Ficou evidente que a atividade de GPX está envolvida nas respostas encontradas tanto na exposição gradual a baixo pH como no tratamento hipo-osmótico anterior ao baixo pH, mas não foi possível determinar se é consequência ou uma das possíveis causas destas respostas. No seu conjunto, os dados indicam que possíveis mudanças na parede celular podem estar envolvidas na melhoria do crescimento radicular e viabilidade celular do ápice durante o estresse. / Acidic soils (pH <5.0) represent about 40% of the arable land in the world. In these soils, toxic aluminum becomes soluble and inhibits root growth. Regardless of Al, low pH is, in itself, also toxic, decreasing cell viability and root growth. There is evidence that H+ and Al3+ can affect the cell wall. Reversely, modifications in the wall may determine the degree of tolerance of roots subjected to these stresses. Therefore, we used two approaches to investigate whether possible changes in the cell wall improve growth and cell viability upon exposure to H + and Al³+. In the first approach, roots of plants of the Micro-Tom (MT) cultivar of tomato (Solanum lycopersicum L.), at 2 and 13 days of development, were exposed directly or gradually to low pH. In the second approach, the roots were subjected to hypoosmotic treatment prior to being exposed to pH 4.0 or 4.5 + Al. In 2- and 13-day plants, gradual exposure was achieved by changing the pH over a 12 and 24 h period, respectively. In the hypo-osmotic pre-treatment (priming), plants were transferred from a high osmolarity solution (150 mM) to another with low osmolarity (0.5 mM), at pH 5.8, for 0, 0.5, 1 and 2 h before being exposed to pH 4.0 or 4.5 + Al for 12h. As controls, roots did not receive any osmotic treatment or were maintained continuously at high osmolarity. Growth of roots exposed directly to pH 4.5 was about half that of control roots at pH 5,8 and at pH 4.0 root growth was suppressed. Different from expected, roots exposed gradually to pH 4.5 grew less than those exposed directly to pH 4.5 and at pH 4.0, root growth remained negligible. However, cell viability was maintained in roots exposed gradually to pH 4.0, unlike those exposed directly. Thus, decreased root growth upon exposure to low pH may be a response generated by the plant itself rather than the direct effect of pH. In roots subjected to hypo-osmotic priming prior to exposure to pH 4.0, cell viability was maintained and root growth was up to 38% of that of control roots at pH 5.8, whereas in control roots at pH 4.0, cell death occurred and root growth was insignificant. At pH 4.5 + 5 uM Al, priming did not reverse the inhibition of root growth, suggesting that responses to H+ and Al3+ are different. GPX was involved in responses to both gradual exposure to low pH and to hypo-osmotic treatment prior to low pH, but it was not possible to determine whether this was a consequence or one of the possible causes of these responses. Taken together, the data indicate that possible changes in the cell wall may be involved in improving root growth and cell viability of the root apex during stress.
40

Perfil de extração de água do solo pela cultura de soja de alta e baixa produtividade de grãos / Soil water extraction by soybean crop of high and low yield

Dantas, João Paulo de Sá 26 October 2018 (has links)
A soja no Brasil está entre as culturas agrícolas que apresentam crescimento mais expressivo em área de cultivo e na encomia do país. O que se deve ao fato da cultura apresentar diversas finalidades desde a produção de biodiesel até consumo humano. Dentre os fatores que afetam a produtividade de soja, o déficit hídrico é tido como o principal. Desta forma, a absorção de água pelo sistema radicular não é capaz de suprir a evapotranspiração apenas com o regime pluviométrico durante o ciclo de soja, logo a planta depende da absorção de água disponível pelo solo, que é diretamente proporcional a profundidade do sistema radicular. Estudos realizados pelo Comitê Estratégico Soja Brasil (CESB) demostraram que o sistema radicular de soja de alta produtividade se estende a profundidade superiores a100 cm. Portanto, a hipótese deste trabalho é de que a absorção de água pela planta ocorre majoritariamente em profundidades superiores à de 15 cm para áreas de alta produtividade, associado a um solo sem restrição química, física ou biológica para o crescimento radicular. Assim, o objetivo desse trabalho foi determinar a profundidade efetiva do sistema radicular (80% da evapotranspiração real, ETr) de soja em duas áreas distintas de alta e baixa produtividade. O cálculo para quantificar a ETr baseia-se na quantidade de água presente no solo e massa específica do mesmo por camada. Para isso o solo foi saturado com água e após 24 horas foi realizada a coletas de amostras de solo indeformadas através de anéis volumétricos em 10 profundidades distinta do solo espaçadas a cada 10 cm (5 a 95 cm), a qual foi repetida após três dias, sem a ocorrência de irrigação ou chuva. A área de baixa produtividade estava localizada em Piracicaba, SP, caracterizada por Latossolo Vermelho-Amarelo distrófico típico, e a área de alta produtividade em Goiatuba-GO, sendo um Latossolo Vermelho eutrófico típico, ambos com textura médioarenosa. Após a coleta das amostras, as mesmas foram pesadas e alocadas em estufas de ventilação forçada até atingir massa constante, determinando o conteúdo de água em cada amostra, e a partir da diferença entre os dois dias determinar o consumo hídrico total. Os resultados da análise química do solo demonstraram que a área de Piracicaba apresentava restrição química ao crescimento radicular pela alta concentração de alumínio abaixo de 40 cm profundidade, e pela resistência do solo a penetração, observando-se valores altos de compactação na camada entre 20 e 40 cm. Tais limitações não estavam presenta na área de Goiatuba. O sistema radicular obteve um crescimento mais expressivo em Goiatuba, tendo 175% e 188%, respectivamente, maior comprimento e área superficial que Piracicaba. A evapotranspiração real da cultura acumulada em três dias foi de 23,7 e 24,4 mm, respectivamente, para Goiatuba e Piracicaba, sendo que Goiatuba obteve o acumulado de 80% entre 70 e 80 cm de profundidade, enquanto que Piracicaba, esse acumulado ocorreu entre 10 e 20 cm. Na área de Goiatuba, a produtividade foi de 91 sc ha-1, contra 61 sc ha-1 na área de Piracicaba. Ademais, a ausência de restrição física e química no solo para crescimento radicular permitiu aumentar a capacidade de água disponível no solo para a planta, reduzindo as perdas de produtividade ocasionadas pelo déficit hídrico. / Soybean is among the agricultural crops that show more expressive growth in the area of cultivation and economy in Brazil. This is because the crop has several purposes from the production of biodiesel to human consumption. Among the factors that affect soybean yield, the water deficit was considered the main one. Thus, the water uptake by the root system is not able to supply the evapotranspiration only using rainfall during the soybean cycle, this way, crop depends on the water uptake available in the soil, which is directly proportional to the root depth. Researches carried out by the Soybean Brazil Committee showed that the soybean root system extends below 100 cm of depth. Therefore, the work hypothesis is that the water uptake by the soybean occurs mainly in depths greater than 15 cm for the areas of high yield, associated with a soil without chemical, physical or biological restriction for root growth. This way, the aim of this research was quantify the effective root depth (80% of the actual crop evapotranspiration, ETr). The ETr was quantified based on the amount of water in the soil and its specific mass by layer. The soil was sutured with water and after 24 hours was made the soil samples in 10 different soil depths spaced every 10 cm (from 5 to 95 cm), which was replicated three days after the first one, without occurrence of irrigation or rainfall. The area of low yield was located in Piracicaba, SP, characterized by typical dystrophic Red-Yellow Latosol, and the area of high yield in Goiatuba, GO, being typical Eutrophic Red Latosol. The both soil were medium-sandy texture. The soil samples were weighed and allocated in forced ventilation greenhouses until reaching constant mass, determining the percentage of water and by the difference from day 0 and day 3 was quantified the total water uptake. The chemical soil analysis showed that the area in Piracicaba had restriction for root growth by high aluminum concentration below 40 cm, and also by high soil compaction between 20 e 40 cm. These limitations were not observed in the area of Goiatuba, which had 175% e 188%, respectively, more root length and superficial area than Piracicaba. The actual crop evapotranspiration accumulated in three days were 23.7 and 24.4 mm, respectively, for Goiatuba e Piracicaba, where the 80% accumulated was between 70 e 80 cm for Goiatuba, and 10 e 20 cm for Piracicaba. In Goiatuba, the yield was 91 sc ha-1 against 61 sc ha-1 in Piracicaba. Thus, the no chemical and physical restriction for the root growth helped to increase the water available for the crop, reducing the yield losses by water deficit.

Page generated in 0.0373 seconds