Spelling suggestions: "subject:"rosenbrock"" "subject:"rosenbrocks""
1 |
Métodos para resolução de EDOs stiff resultantes de modelos químicos atmosféricos / Methods for solving stiff ODEs resulting from atmospheric chemistry modelsSartori, Larissa Marques 21 February 2014 (has links)
Problemas provenientes de química atmosférica, possuem uma característica especial denominada stiffness, indicando que as soluções dos sistemas de equações diferenciais ordinárias envolvidos variam em diferentes ordens de grandeza. Isso faz com que métodos numéricos adequados devam ser aplicados no intuito de obter soluções numéricas convergentes e estáveis. Os métodos mais eficazes para tratar este tipo de problema são os métodos implícitos, pois possuem uma região de estabilidade ilimitada que permite grandes variações no tamanho do passo, mantendo o erro de discretização dentro de uma dada tolerância. Mais precisamente, estes métodos possuem a propriedade de A-estabilidade ou A(alpha)-estabilidade. Neste trabalho, comparamos dois métodos numéricos com estas características: o método de Rosenbrock e a fórmula de diferenciação regressiva (métodos BDF). O primeiro é usado no módulo de Química do modelo CCATT-BRAMS do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), sendo incluído na previsão numérica de regiões com intensas fontes de poluição. Este é um método de passo simples implícito com um controle de passo adaptativo. Aqui empregamos também o segundo, um método de passo múltiplo que dispõe de uma fórmula que permite variação no tamanho do passo e na ordem, empregando o pacote LSODE. Os resultados de nossas comparações indicam que os métodos BDF podem se constituir em interessante alternativa para uso no CCATT-BRAMS. / Problems from atmospheric chemistry have a special characteristic denominated stiffness, indicating that the solutions of the involved ordinary differential equations systems vary in different scales. This means that appropriate methods should be applied in order to get convergent and stable numerical solutions. The most powerful methods to treat problems like this are implicit schemes, since they have unlimited stabity regions, allowing large variations in step size, keeping the discretization error within a given tolerance. More precisely, these methods have the A-stability or A(alpha)-stability properties. In this work, we compared two numerical methods with those characteristics: the Rosenbrock method and the backward differentiation formula (BDF). The first one is employed in the Chemistry package within CCATT-BRAMS local weather model of CPTEC (Center for Weather Forecasts and Climate Studies), which is mainly used for the numerical forecasting of regions with intense pollution. This is a implicit one-step method with an adaptative stepsize control. We compare it with the second method, a multistep method with a formula that allows variations in step size and order, with the help of the LSODE package. The results of our comparisons indicate that BDF methods are an interesting alternative to be used within CCATT-BRAMS.
|
2 |
Métodos para resolução de EDOs stiff resultantes de modelos químicos atmosféricos / Methods for solving stiff ODEs resulting from atmospheric chemistry modelsLarissa Marques Sartori 21 February 2014 (has links)
Problemas provenientes de química atmosférica, possuem uma característica especial denominada stiffness, indicando que as soluções dos sistemas de equações diferenciais ordinárias envolvidos variam em diferentes ordens de grandeza. Isso faz com que métodos numéricos adequados devam ser aplicados no intuito de obter soluções numéricas convergentes e estáveis. Os métodos mais eficazes para tratar este tipo de problema são os métodos implícitos, pois possuem uma região de estabilidade ilimitada que permite grandes variações no tamanho do passo, mantendo o erro de discretização dentro de uma dada tolerância. Mais precisamente, estes métodos possuem a propriedade de A-estabilidade ou A(alpha)-estabilidade. Neste trabalho, comparamos dois métodos numéricos com estas características: o método de Rosenbrock e a fórmula de diferenciação regressiva (métodos BDF). O primeiro é usado no módulo de Química do modelo CCATT-BRAMS do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), sendo incluído na previsão numérica de regiões com intensas fontes de poluição. Este é um método de passo simples implícito com um controle de passo adaptativo. Aqui empregamos também o segundo, um método de passo múltiplo que dispõe de uma fórmula que permite variação no tamanho do passo e na ordem, empregando o pacote LSODE. Os resultados de nossas comparações indicam que os métodos BDF podem se constituir em interessante alternativa para uso no CCATT-BRAMS. / Problems from atmospheric chemistry have a special characteristic denominated stiffness, indicating that the solutions of the involved ordinary differential equations systems vary in different scales. This means that appropriate methods should be applied in order to get convergent and stable numerical solutions. The most powerful methods to treat problems like this are implicit schemes, since they have unlimited stabity regions, allowing large variations in step size, keeping the discretization error within a given tolerance. More precisely, these methods have the A-stability or A(alpha)-stability properties. In this work, we compared two numerical methods with those characteristics: the Rosenbrock method and the backward differentiation formula (BDF). The first one is employed in the Chemistry package within CCATT-BRAMS local weather model of CPTEC (Center for Weather Forecasts and Climate Studies), which is mainly used for the numerical forecasting of regions with intense pollution. This is a implicit one-step method with an adaptative stepsize control. We compare it with the second method, a multistep method with a formula that allows variations in step size and order, with the help of the LSODE package. The results of our comparisons indicate that BDF methods are an interesting alternative to be used within CCATT-BRAMS.
|
3 |
Sistemas rígidos associados a cadeias de decaimento radioativo / Stiff systems associated with radioactive decay chainsLoch, Guilherme Galina 05 April 2016 (has links)
Os progressos computacionais nas últimas décadas e a teoria matemática cada vez mais sólida têm possibilitado a resolução de problemas de alta complexidade, permitindo uma modelagem cada vez mais detalhada da realidade. Tal verdade aplica-se inclusive para os sistemas rígidos de Equações Diferencias Ordinárias (EDOs): existem métodos numéricos altamente performáticos para este tipo de problema, que permitem uma grande variação no tamanho do passo de integração sem impactar na sua convergência. Este trabalho apresenta um estudo sobre o conceito de rigidez e técnicas numéricas para resolução de problemas rígidos de EDOs. O que nos motivou a estudar tais técnicas foram problemas oriundos da Física Nuclear que envolvem cadeias de decaimento radioativo. Estes problemas podem ser modelados por uma cadeia fechada de compartimentos que se traduz em um sistema de EDOs. Os elementos destas cadeias podem possuir constantes de decaimento com ordens de grandeza muito distintas, caracterizando a sua rigidez e exigindo cautela na resolução das equações que as modelam. Embora seja possível determinar a solução analítica para estes problemas, o uso de métodos numéricos facilita a obtenção da solução quando consideramos sistemas com um número elevado de equações. Além disso, soluções numéricas permitem adaptações na modelagem ou em ajustes de dados com mais facilidade. Métodos implícitos são indicados para a resolução deste tipo de problema, pois possuem uma região de estabilidade ilimitada. Neste trabalho, implementamos dois métodos numéricos que possuem esta característica: o método de Radau II e o método de Rosenbrock. Estes métodos foram utilizados para obtenção de soluções numéricas robustas para problemas rígidos de decaimento radioativo envolvendo cadeias naturais e artificiais, considerando retiradas de elementos das cadeias durante o processo de decaimento e quando queremos determinar qual era o estado inicial de uma cadeia que está em decaimento. Ambos os métodos foram implementados com estratégias de controle do tamanho do passo de integração e produziram resultados consistentes dentro de uma precisão pré-fixada. / The computational progress in the last decades and the increasingly solid mathematical theory have made possible the resolution of highly complex problems allowing an ever more detailed modelling of reality. This is true even for the systems of stiff Ordinary Differential Equations (ODEs): there are highly performative numerical methods for this kind of problem which allow a wide variation in the size of integration step without impacting on their convergence. This thesis presents a study about the concept of stiffness and numerical techniques to solve stiff problems of ODEs. What motivated us to study these techniques were problems from the Nuclear Physics involving radioactive decay chains. These problems could be modelled by a closed chain of compartments which is translated into a system of ODEs. The elements of these chains could have decay constants with very different orders of magnitude which characterizes the stiffness of the problem and requires caution in solving the model equations. Although it is possible to determine the analytical solution to these problems when we consider systems with a high number of equations, calculate the solution by numerical methods becomes easier. Furthermore, numerical solutions allow adaptations in modelling or data adjustments more easily. Implicit methods are indicated to solve this kind of problem because they have an unlimited region of stability. In this study, we implemented two numerical methods which have this feature: Radau II method and Rosenbrock method. These methods were used to obtain robust numerical solutions for stiff problems of radioactive decay involving natural and artificial chains, considering the removal of elements during the decay process and when we want to determine what was the initial state of a chain which is decaying. Both methods were implemented with control strategies for integration step size providing consistent results within a pre-established accuracy.
|
4 |
Sistemas rígidos associados a cadeias de decaimento radioativo / Stiff systems associated with radioactive decay chainsGuilherme Galina Loch 05 April 2016 (has links)
Os progressos computacionais nas últimas décadas e a teoria matemática cada vez mais sólida têm possibilitado a resolução de problemas de alta complexidade, permitindo uma modelagem cada vez mais detalhada da realidade. Tal verdade aplica-se inclusive para os sistemas rígidos de Equações Diferencias Ordinárias (EDOs): existem métodos numéricos altamente performáticos para este tipo de problema, que permitem uma grande variação no tamanho do passo de integração sem impactar na sua convergência. Este trabalho apresenta um estudo sobre o conceito de rigidez e técnicas numéricas para resolução de problemas rígidos de EDOs. O que nos motivou a estudar tais técnicas foram problemas oriundos da Física Nuclear que envolvem cadeias de decaimento radioativo. Estes problemas podem ser modelados por uma cadeia fechada de compartimentos que se traduz em um sistema de EDOs. Os elementos destas cadeias podem possuir constantes de decaimento com ordens de grandeza muito distintas, caracterizando a sua rigidez e exigindo cautela na resolução das equações que as modelam. Embora seja possível determinar a solução analítica para estes problemas, o uso de métodos numéricos facilita a obtenção da solução quando consideramos sistemas com um número elevado de equações. Além disso, soluções numéricas permitem adaptações na modelagem ou em ajustes de dados com mais facilidade. Métodos implícitos são indicados para a resolução deste tipo de problema, pois possuem uma região de estabilidade ilimitada. Neste trabalho, implementamos dois métodos numéricos que possuem esta característica: o método de Radau II e o método de Rosenbrock. Estes métodos foram utilizados para obtenção de soluções numéricas robustas para problemas rígidos de decaimento radioativo envolvendo cadeias naturais e artificiais, considerando retiradas de elementos das cadeias durante o processo de decaimento e quando queremos determinar qual era o estado inicial de uma cadeia que está em decaimento. Ambos os métodos foram implementados com estratégias de controle do tamanho do passo de integração e produziram resultados consistentes dentro de uma precisão pré-fixada. / The computational progress in the last decades and the increasingly solid mathematical theory have made possible the resolution of highly complex problems allowing an ever more detailed modelling of reality. This is true even for the systems of stiff Ordinary Differential Equations (ODEs): there are highly performative numerical methods for this kind of problem which allow a wide variation in the size of integration step without impacting on their convergence. This thesis presents a study about the concept of stiffness and numerical techniques to solve stiff problems of ODEs. What motivated us to study these techniques were problems from the Nuclear Physics involving radioactive decay chains. These problems could be modelled by a closed chain of compartments which is translated into a system of ODEs. The elements of these chains could have decay constants with very different orders of magnitude which characterizes the stiffness of the problem and requires caution in solving the model equations. Although it is possible to determine the analytical solution to these problems when we consider systems with a high number of equations, calculate the solution by numerical methods becomes easier. Furthermore, numerical solutions allow adaptations in modelling or data adjustments more easily. Implicit methods are indicated to solve this kind of problem because they have an unlimited region of stability. In this study, we implemented two numerical methods which have this feature: Radau II method and Rosenbrock method. These methods were used to obtain robust numerical solutions for stiff problems of radioactive decay involving natural and artificial chains, considering the removal of elements during the decay process and when we want to determine what was the initial state of a chain which is decaying. Both methods were implemented with control strategies for integration step size providing consistent results within a pre-established accuracy.
|
5 |
Stabilité dynamique des systèmes électriques multimachines : modélisation, commande, observation et simulationAbu-Tabak, Nesmat 18 November 2008 (has links) (PDF)
Cette thèse est un travail de modélisation, commande, observation et simulation des systèmes électriques multimachines. L'aspect nouveau est constaté au niveau de l'utilisation de l'observation d'état pour la commande en vue d'améliorer l'amortissement des systèmes électriques multimachines. Ce sujet est un sujet actuel et intéressant surtout avec le développement des réseaux de distribution. Des nouvelles sources, surtout les éoliennes, se trouvent en cogénération avec d'autre sources traditionnelles dans le même réseau ce qui met en question sa stabilité transitoire et dynamique. Cette thèse focalise sur l'impact de l'éolienne à vitesse variable sur le la stabilité du réseau électrique multimachine. L'éolienne, comme une source fluctuante, sera présentée, dans cette thèse, comme une source de perturbation qui influence la stabilité dynamique du réseau. Cette perturbation est liée directement à la commande de l'éolienne. L'éolienne est à machine asynchrone à vitesse variable commandée par orientation du flux statorique ou rotorique. Pour une telle commande la mesure du couple total est indispensable alors qu'il est difficilement mesurable. Dans ce contexte, un nouvel estimateur du couple total est discuté afin d'élaborer la commande. Nous comparerons entre trois types d'éolienne ; à MAS à vitesse fixe, variable et à MADA. Dans cette thèse, le modèle linéaire du système électrique multimachine sera obtenu en vue de la commande. Le modèle de l'éolienne ne sera pas inclus dans le modèle du réseau et l'éolienne sera considérée comme une charge passive. L'objectif final est d'améliorer les comportements dynamiques du système avec une commande par retour d'état statique. La commande et l'observateur d'état seront conçus par plusieurs méthodes très intéressantes parmi lesquelles la méthode LMI.
|
6 |
Entwicklung optimierter Regelverfahren für Raumlufttechnische Anlagen mit Hilfe des Simulationssystems TRNSYSRathey, Axel 07 July 2000 (has links) (PDF)
Die Dissertation beschäftigt sich mit der gekoppelten Simulation von Klimaanlage, Regelung und Gebäude mit Hilfe des Simulationssystems TRNSYS. Während für das Gebäude ein vorhandenes TRNSYS Modul verwendet wird, wurden für Klimaanlage und Regelung neue Simulationsmodule entwickelt. Der Klimaanlagensimulator ist seinerseits modular aufgebaut enthält sowohl geometrisch physikalische und empirische als auch kombinierte Modelle für die Simulation von Ventilatoren, Lufterhitzern, Feuchtluftkühlern, Befeuchtern, Regeneratoren, Plattenwärmeüberträgern, Kreislaufwärmerückgewinnern, Ventilen, hydraulischen Schaltungen usw., die für die Simulation sehr variabel miteinander verschaltet werden können. Es wurden optimierte Regelstrategien für konventionelle und DEC-Anlagen entwickelt und entsprechende TRNSYS-Module zur Umsetzung in die Simulation programmiert. Für die Sequenzregelung mehrerer Größen (z.B. Temperatur, Feuchte) wurde ein frei programmierbarer Mehrsequenzregler entwickelt, der den scheinbaren Reglerstillstand über Verknüpfungen blockierter Stellglieder einer Regelsequenz verhindert. Die Qualität der Regelsequenzen wurde mit Hilfe eines über das Rosenbrockverfahren und der dynamischen Optimierung ermittelten optimalen Vergleichsprozesses bewertet.
|
7 |
Identification et commande des systèmes non linéaires : Utilisation des modèles de type NARMATlili, Brahim 29 July 2008 (has links) (PDF)
Dans ce travail, nous nous sommes intéressés à l'identification et la commande prédictive des systèmes non linéaires monovariables et multivariables en exploitant les modèles NARMA. Pour l'identification des modèles de type NARMA, nous avons proposé deux nouvelles méthodes heuristiques. La première méthode est basée sur les algorithmes génétiques binaires et la deuxième méthode constitue une combinaison entre le réseau de neurones artificiels à fonction d'activation polynomiale et l'algorithme génétique sous sa représentation réelle. Cette dernière méthode a été également développée pour la modélisation des systèmes multivariables. Les résultats trouvés, pratiques ou en simulations, ont confirmé l'efficacité et la robustesse des méthodes proposées. En effet, les modèles NARMA déterminés caractérisent avec une précision acceptable et avec une complexité raisonnable le comportement des systèmes étudiés. Par la suite nous avons proposé un contrôleur prédictif des systèmes non linéaires sous contraintes, qui exploite les modèles de type NARMA. La loi de commande est obtenue en minimisant un critère quadratique non convexe. Le problème d'optimisation est résolu par deux méthodes utilisant les algorithmes de Nelder-Mead et de Rosenbrock qui ne nécessitent pas le calcul de la dérivée du critère. Ces méthodes, combinées avec la fonction de pénalité, l'approche CFON ainsi que l'utilisation de la notion de multi initialisation, permettent une meilleure convergence vers le minimum global.
|
8 |
Some numerical techniques for approximating semilinear parabolic (stochastic) partial differential equationsMukam, Jean Daniel 11 October 2021 (has links)
Partial differential equations (PDEs) and stochastic partial differential equations (SPDEs) are powerful tools in modeling real-world phenomena in many fields
such as geo-engineering. For instance processes such as oil or gas recovery from hydrocarbon reservoirs and mining heat from geothermal reservoirs can be modeled
by PDEs or SPDEs. An important task is to understand the behavior of such phenomena. This can be achieved through explicit solutions of equations. Since
explicit solutions of many PDEs and SPDEs are rarely known, developing numerical schemes is a good alternative to provide approximations of these explicit solutions.
The study of numerical solutions of PDEs and SPDEs is therefore an active research area and has attracted a lot of attentions since at least two decades. The aims of this dissertation is to develop numerical schemes to approximate semilinear parabolic PDEs and SPDEs in space and in time. The approximation in space is done via the standard Galerkin finite element method and the approximation in time, which is the core of our work is done via various numerical integrators. This dissertation consists of two general parts.
The first part of this thesis deals with autonomous PDEs and SPDEs. Here, our main interest is on semilinear PDEs and SPDEs where the nonlinear part is stronger
than the linear part also called (stochastic) reactive dominated transport equations, or stiff problems. For such problems, many numerical techniques in the current
scientific literature lose their good stability properties. We develop a new explicit exponential integrator (called exponential Rosenbrock-type method) and a new
semi-implicit method (called linear implicit Rosenbrock-type method), appropriate for such PDEs and SPDEs. We analyze the strong convergence of our novel fully
discrete schemes towards the mild solution of the (S)PDE and obtain convergence orders similar to existing ones in the literature.
The second part of this thesis focuses on numerical approximations of semilinear non-autonomous parabolic PDEs and SPDEs. Such equations are more realistic than the autonomous ones and find applications in many fields such as fluid mechanics, quantum field theory, electromagnetism, etc. Numerics of non-autonomous semilinear parabolic PDEs and SPDEs are far from being well understood in the literature. We fill that gap in this thesis by developing a new exponential integrator (called Magnus-type method) and the semi-implicit method for such problems and provide their strong convergence towards the mild solution. Moreover, for both autonomous and non-autonomous SPDEs driven by additive noise, we achieve optimal convergence order in time 1 or approximately 1. Numerical simulations are provided to illustrate our theoretical findings in both autonomous and non-autonomous cases.
|
9 |
Entwicklung optimierter Regelverfahren für Raumlufttechnische Anlagen mit Hilfe des Simulationssystems TRNSYSRathey, Axel 31 May 2000 (has links)
Die Dissertation beschäftigt sich mit der gekoppelten Simulation von Klimaanlage, Regelung und Gebäude mit Hilfe des Simulationssystems TRNSYS. Während für das Gebäude ein vorhandenes TRNSYS Modul verwendet wird, wurden für Klimaanlage und Regelung neue Simulationsmodule entwickelt. Der Klimaanlagensimulator ist seinerseits modular aufgebaut enthält sowohl geometrisch physikalische und empirische als auch kombinierte Modelle für die Simulation von Ventilatoren, Lufterhitzern, Feuchtluftkühlern, Befeuchtern, Regeneratoren, Plattenwärmeüberträgern, Kreislaufwärmerückgewinnern, Ventilen, hydraulischen Schaltungen usw., die für die Simulation sehr variabel miteinander verschaltet werden können. Es wurden optimierte Regelstrategien für konventionelle und DEC-Anlagen entwickelt und entsprechende TRNSYS-Module zur Umsetzung in die Simulation programmiert. Für die Sequenzregelung mehrerer Größen (z.B. Temperatur, Feuchte) wurde ein frei programmierbarer Mehrsequenzregler entwickelt, der den scheinbaren Reglerstillstand über Verknüpfungen blockierter Stellglieder einer Regelsequenz verhindert. Die Qualität der Regelsequenzen wurde mit Hilfe eines über das Rosenbrockverfahren und der dynamischen Optimierung ermittelten optimalen Vergleichsprozesses bewertet.
|
Page generated in 0.0452 seconds