• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 22
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 10
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 153
  • 110
  • 38
  • 32
  • 32
  • 27
  • 18
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Verificação da linearidade da resposta oceânica à forçante do vento em larga escala / Verification of the linear ocean response to large scale wind forcing

Watanabe, Wandrey de Bortoli 01 October 2010 (has links)
A resposta oceânica a perturbações com períodos e comprimentos significativamente maiores que o período inercial e que o raio de deformação de Rossby se dá na forma de ondas de Rossby planetárias. Geralmente, as perturbações são atribuídas a variações no rotacional do vento via bombeamento de Ekman. A passagem dessas ondas causa deformação das isopicnais, podendo resultar em anomalias da temperatura da superfície do mar (TSM) por advecção vertical. Dependendo de como ocorre a interação ar-mar, anomalias de TSM podem alterar o campo de ventos ou serem alteradas por ele através de fluxo de calor. Este trabalho utiliza dez anos de dados de temperatura da superfície do mar, velocidade e direção dos ventos e anomalia da altura do mar obtidos por satélites para identificar regiões do oceano onde há forçamento direto do vento na geração de ondas planetárias que se propagam linearmente. Mapas de correlação cruzada entre essas variáveis permitiram identificar onde a interação entre o oceano e a atmosfera é linear. Um modelo simples de uma camada e meia forçado apenas pelo bombeamento de Ekman foi utilizado para testar se, nestas regiões, a variabilidade atmosférica seria suficiente para explicar a variabilidade das ondas de Rossby estimadas pelos dados altimétricos. A interação entre a TSM e a intensidade do vento no Atlântico sul tropical é distinta das demais bacias oceânicas. Das correlações entre a TSM e o rotacional da tensão de cisalhamento do vento, observou-se que a dinâmica de Ekman não é marcante no Índico. Nas regiões tropicais do Atlântico e do Pacífico, as previsões do modelo foram similares às observações. Por fim, foram obtidas evidências de geração e retroalimentação de ondas planetárias nas bordas leste do Atlântico e do Pacífico. / Rossby waves are the ocean response to perturbations whose temporal and spatial scales are significantly longer than both the inertial period and the Rossby radius of deformation. These perturbations are, more often than not, attributed to variations in the wind stress curl {\\em via} Ekman pumping. The waves cause isopycnal displacement which due to vertical advection may result in sea surface temperature (SST) anomalies. Depending on the ocean--atmosphere interaction, SST anomalies can either change the wind field or be changed by it due to the heat flux. This study makes use of ten years of satellite derived SST, wind vector, and sea surface height anomaly data to identify regions where there is direct wind forcing of linear Rossby waves. Cross-correlation maps between these variables show where linear interactions occur. A simple 1½ layer model forced by Ekman pumping was used to check if, in those regions, atmospheric variability alone can explain the observed Rossby wave variability as estimated from radar altimeter data. The interaction between SST and wind magnitude in the South Atlantic is distinct from all other ocean basins. SST and wind stress curl correlations show that the Ekman dynamics is not dominant in the Indian Ocean. In the tropical Atlantic and Pacific the model predictions are similar to the observations. Finally, evidence of genesis and feedback of planetary waves is presented for the eastern boundaries of the Atlantic and Pacific oceans.
102

Dynamique et stabilité de fronts : phénomènes agéostrophiques / Dynamics and stability of fronts : ageostrophic phenomena.

Scolan, Hélène 16 December 2011 (has links)
Cette thèse s'inscrit dans un contexte d'étude de la dynamique des fronts atmosphériques et océaniques et de l'origine des ondes de gravité dans l'atmosphère. Pour cela on s'intéresse à un front composé de deux couches de fluides miscibles en milieu tournant et soumis à un cisaillement vertical. Un travail à la fois expérimental et numérique met en évidence des phénomènes agéostrophiques qui vont au-delà de la configuration équilibrée usuelle d'un front barocline. D'abord, l'étude des différents régimes instables d'un front en configuration annulaire en terme de nombre de Rossby et de Burger révèle une instabilité agéostrophique couplant des mouvements équilibrés et divergents grâce à la résonance entre une onde de Rossby et une onde de Kelvin. Cette instabilité Rossby-Kelvin a été confirmée numériquement grâce aux structures des perturbations en champs de vitesse dans chaque couche. Ensuite, des structures de petite échelle présentes sur le front ont aussi été observées expérimentalement. Les caractéristiques de l'interface en terme de nombre de Richardson et épaisseurs de l'interface en vitesse et en densité suggère une instabilité de cisaillement de Hölmböe. Une simulation directe numérique axisymmétrique avec un nombre de Schmidt valant 700 confirme cette conjecture. Des ondes inertie-gravité supplémentaires sont observées numériquement sur un mode instable Rossby-Kelvin et le mécanisme de génération de ces ondes est discuté. Enfin l'étude numérique d'un front stable a mis en évidence la présence de couches d'Ekman internes avec une structure additionnelle pour des valeurs élevées de nombre de Schmidt et un faible nombre de Rossby. Dans le cas de front en in/outcropping, la dynamique est modifiée par l'interaction du front avec les couches d'Ekman au niveau du point singulier d'épaisseur nulle. Elle dépend à la fois de la circulation verticale et du mélange sur le nez du front et des nombreuses instabilités possibles associées à des résonances d'ondes horizontalement et verticalement. / This thesis has to be seen within the general study of atmospheric and oceanic fronts and the origin of gravity waves in the atmosphere. In this context we focus on a front in a rotating two-layer miscible fluid under vertical shear. Both experimental and numerical study highlights ageostrophic phenomena going beyond the usual geostrophic equilibrated configuration of a baroclinic front. First, the classification of different instability regimes of a front in an annular configuration as a fonction of Rossby number and Burger number reveals an ageostrophic instability coupling equilibrated and divergent motions due to a resonance between a Rossby wave and a Kelvin wave. This Rossby-Kelvin instability is confirmed numerically by the structure of the perturbation velocity fields in each layer. Second, small-scale structures have also been observed experimentally. Caracteristics of the interface in function of Richardson number and density and velocity interface thicknesses suggests the presence of the Hölmböe shear instability. A direct numerical simulation with an axisymmetric configuration and with a Schmidt number 700 confirms this conjecture. Other smalle-scale perturbations compatible with inertia-gravity waves have been observed numerically superimposed on an unstable Rossby-Kelvin front and the wave generation mechanism is discussed. In addition, a numerical study of a stable front highlighted the presenec of internal Ekman layers with an additional interfacial structure in the case of high Schmidt number and small Rossby number. For fronts in in/outcropping, front dynamics is modified by interaction with Ekman boundary layer at the location of the intersection zero-thickness singular point. It depends on both vertical circulation and mixing on the nose of the front and the various possible instabilities associated to horizontal or vertical wave resonances.
103

Dinâmica e interação oceano-atmosfera de ondas de instabilidade tropical e ondas de Rossby curtas / Dynamics and ocean-atmosphere interaction of tropical instability waves and short Rossby waves

Costa, Carine de Godoi Rezende 19 December 2013 (has links)
A hipótese principal deste trabalho é que as anomalias de precipitação na ZCIT com períodos de 20 a 50 dias e dimensão zonal de 1000 a 1500 km, causadas remotamente por Ondas de Instabilidade Tropical (OITs) e/ou Ondas de Rossby Curtas (ORCs) podem causar anomalias de salinidade da superfície do mar. Para responder à hipótese, o presente trabalho quantifica a influência dos padrões propagantes da temperatura da superfície do mar sobre variáveis atmosféricas na escala das ORCs e OITs. Os coeficientes de regressão do vapor dágua integrado verticalmente e da precipitação revelam que a influência da temperatura superficial na atmosfera se dá remotamente à região de domínio das ondas, alcançando a ZCIT. A distribuição das anomalias do divergente do vento corrobora a ideia de aceleração dos ventos sobre águas quentes e desaceleração sobre águas frias. A carência de correlações estatisticamente significativas entre a precipitação e a salinidade superficial, devido à baixa qualidade dos dados, não permitiu que a hipótese principal fosse avaliada. Entretanto, fica evidente a influência destas ondas em variáveis atmosféricas que alteram o balanço de evaporação e precipitação que tem influência direta na salinidade superficial. Denominamos ORCs as oscilações com período de _49 dias e comprimento de onda de _1500 km e OITs os padrões com _21 dias e _1000 km. A identificação dinâmica destas ondas foi feita através da teoria linear de ondas equatoriais no modelo de águas rasas quase-geostrófico para um oceano invíscido de 1,5 camadas. Os dados de anomalia da altura da superfície do mar revelaram apenas a existência de ORCs, enquanto que a temperatura da superfície do mar apresentou o sinal de ambas as ondas, sendo as OITs dominantes até 6_ do Equador. A principal contribuição deste trabalho é a confirmação da hipótese de que OITs e ORCs coexistem, são distinguíveis e geram alterações no vento por mecanismos similares. Até o presente momento, desconhecemos outro estudo que alie a separação teórica dos padrões oceânicos propagantes obtidos por satélites à quantificação da variabilidade atmosférica associada às anomalias de TSM em bandas do espectro zonal-temporal características de ondas dinamicamente distintas / We hypothesize that rainfall anomalies with 2050 days and 10001500 km on the Intertropical Convergence Zone (ITCZ) can induce sea surface salinity anomalies. We argue that these precipitation anomalies are remotely caused by Tropical Instability Waves (TIWs) and Short RossbyWaves (SRWs). We have quantified the sea surface temperature influence on atmospheric fields at the TIWs and SRWs spectral bands through regression analysis. In that, wind anomalies are larger over temperature anomalies. Winds tend to accelerate over positive temperature anomalies and slow down over negative anomalies. Changes on water vapor and rainfall occur predominantly on the ITCZ, far from the strongest temperature anomalies near the equator. However, we couldnt address the main hypothesis due to the lack of significant correlation between rainfall and sea surface salinity anomalies. We speculate that this is a consequence of the low quality of the salinity data used in this study. We have identified TIWs as the waves with _21 days and _1000 km and SRWs as the oscillations with _49 days and _1500 km. The identification of the dynamics was made according to equatorial long waves theory based on a linear, quasi-geostrophic, 1.5 layers, inviscid ocean model. Sea surface height anomalies could only reveal SRWs. Sea surface temperature anomalies show both type of waves, with TIWs dominating within 6_ from the equator. Our main contribution was to show that TIWs and SRWs coexist, can be isolated and change wind field through similar mechanisms. We do not know any other study that linked theoretical identification of dynamically different oceanic waves to the atmospheric variability in a quantitative fashion
104

Verificação da linearidade da resposta oceânica à forçante do vento em larga escala / Verification of the linear ocean response to large scale wind forcing

Wandrey de Bortoli Watanabe 01 October 2010 (has links)
A resposta oceânica a perturbações com períodos e comprimentos significativamente maiores que o período inercial e que o raio de deformação de Rossby se dá na forma de ondas de Rossby planetárias. Geralmente, as perturbações são atribuídas a variações no rotacional do vento via bombeamento de Ekman. A passagem dessas ondas causa deformação das isopicnais, podendo resultar em anomalias da temperatura da superfície do mar (TSM) por advecção vertical. Dependendo de como ocorre a interação ar-mar, anomalias de TSM podem alterar o campo de ventos ou serem alteradas por ele através de fluxo de calor. Este trabalho utiliza dez anos de dados de temperatura da superfície do mar, velocidade e direção dos ventos e anomalia da altura do mar obtidos por satélites para identificar regiões do oceano onde há forçamento direto do vento na geração de ondas planetárias que se propagam linearmente. Mapas de correlação cruzada entre essas variáveis permitiram identificar onde a interação entre o oceano e a atmosfera é linear. Um modelo simples de uma camada e meia forçado apenas pelo bombeamento de Ekman foi utilizado para testar se, nestas regiões, a variabilidade atmosférica seria suficiente para explicar a variabilidade das ondas de Rossby estimadas pelos dados altimétricos. A interação entre a TSM e a intensidade do vento no Atlântico sul tropical é distinta das demais bacias oceânicas. Das correlações entre a TSM e o rotacional da tensão de cisalhamento do vento, observou-se que a dinâmica de Ekman não é marcante no Índico. Nas regiões tropicais do Atlântico e do Pacífico, as previsões do modelo foram similares às observações. Por fim, foram obtidas evidências de geração e retroalimentação de ondas planetárias nas bordas leste do Atlântico e do Pacífico. / Rossby waves are the ocean response to perturbations whose temporal and spatial scales are significantly longer than both the inertial period and the Rossby radius of deformation. These perturbations are, more often than not, attributed to variations in the wind stress curl {\\em via} Ekman pumping. The waves cause isopycnal displacement which due to vertical advection may result in sea surface temperature (SST) anomalies. Depending on the ocean--atmosphere interaction, SST anomalies can either change the wind field or be changed by it due to the heat flux. This study makes use of ten years of satellite derived SST, wind vector, and sea surface height anomaly data to identify regions where there is direct wind forcing of linear Rossby waves. Cross-correlation maps between these variables show where linear interactions occur. A simple 1½ layer model forced by Ekman pumping was used to check if, in those regions, atmospheric variability alone can explain the observed Rossby wave variability as estimated from radar altimeter data. The interaction between SST and wind magnitude in the South Atlantic is distinct from all other ocean basins. SST and wind stress curl correlations show that the Ekman dynamics is not dominant in the Indian Ocean. In the tropical Atlantic and Pacific the model predictions are similar to the observations. Finally, evidence of genesis and feedback of planetary waves is presented for the eastern boundaries of the Atlantic and Pacific oceans.
105

Dinâmica e interação oceano-atmosfera de ondas de instabilidade tropical e ondas de Rossby curtas / Dynamics and ocean-atmosphere interaction of tropical instability waves and short Rossby waves

Carine de Godoi Rezende Costa 19 December 2013 (has links)
A hipótese principal deste trabalho é que as anomalias de precipitação na ZCIT com períodos de 20 a 50 dias e dimensão zonal de 1000 a 1500 km, causadas remotamente por Ondas de Instabilidade Tropical (OITs) e/ou Ondas de Rossby Curtas (ORCs) podem causar anomalias de salinidade da superfície do mar. Para responder à hipótese, o presente trabalho quantifica a influência dos padrões propagantes da temperatura da superfície do mar sobre variáveis atmosféricas na escala das ORCs e OITs. Os coeficientes de regressão do vapor dágua integrado verticalmente e da precipitação revelam que a influência da temperatura superficial na atmosfera se dá remotamente à região de domínio das ondas, alcançando a ZCIT. A distribuição das anomalias do divergente do vento corrobora a ideia de aceleração dos ventos sobre águas quentes e desaceleração sobre águas frias. A carência de correlações estatisticamente significativas entre a precipitação e a salinidade superficial, devido à baixa qualidade dos dados, não permitiu que a hipótese principal fosse avaliada. Entretanto, fica evidente a influência destas ondas em variáveis atmosféricas que alteram o balanço de evaporação e precipitação que tem influência direta na salinidade superficial. Denominamos ORCs as oscilações com período de _49 dias e comprimento de onda de _1500 km e OITs os padrões com _21 dias e _1000 km. A identificação dinâmica destas ondas foi feita através da teoria linear de ondas equatoriais no modelo de águas rasas quase-geostrófico para um oceano invíscido de 1,5 camadas. Os dados de anomalia da altura da superfície do mar revelaram apenas a existência de ORCs, enquanto que a temperatura da superfície do mar apresentou o sinal de ambas as ondas, sendo as OITs dominantes até 6_ do Equador. A principal contribuição deste trabalho é a confirmação da hipótese de que OITs e ORCs coexistem, são distinguíveis e geram alterações no vento por mecanismos similares. Até o presente momento, desconhecemos outro estudo que alie a separação teórica dos padrões oceânicos propagantes obtidos por satélites à quantificação da variabilidade atmosférica associada às anomalias de TSM em bandas do espectro zonal-temporal características de ondas dinamicamente distintas / We hypothesize that rainfall anomalies with 2050 days and 10001500 km on the Intertropical Convergence Zone (ITCZ) can induce sea surface salinity anomalies. We argue that these precipitation anomalies are remotely caused by Tropical Instability Waves (TIWs) and Short RossbyWaves (SRWs). We have quantified the sea surface temperature influence on atmospheric fields at the TIWs and SRWs spectral bands through regression analysis. In that, wind anomalies are larger over temperature anomalies. Winds tend to accelerate over positive temperature anomalies and slow down over negative anomalies. Changes on water vapor and rainfall occur predominantly on the ITCZ, far from the strongest temperature anomalies near the equator. However, we couldnt address the main hypothesis due to the lack of significant correlation between rainfall and sea surface salinity anomalies. We speculate that this is a consequence of the low quality of the salinity data used in this study. We have identified TIWs as the waves with _21 days and _1000 km and SRWs as the oscillations with _49 days and _1500 km. The identification of the dynamics was made according to equatorial long waves theory based on a linear, quasi-geostrophic, 1.5 layers, inviscid ocean model. Sea surface height anomalies could only reveal SRWs. Sea surface temperature anomalies show both type of waves, with TIWs dominating within 6_ from the equator. Our main contribution was to show that TIWs and SRWs coexist, can be isolated and change wind field through similar mechanisms. We do not know any other study that linked theoretical identification of dynamically different oceanic waves to the atmospheric variability in a quantitative fashion
106

Variabilidade climática nos oceanos e a vazão fluvial no Planalto Brasileiro / Oceans and climate variability in the river flow in Brazilian Pantanal

Silva, Carlos Batista da 05 November 2012 (has links)
O objetivo do presente estudo foi avaliar a associação temporal entre a vazão de rios do Pantanal brasileiro com as informações sobre a temperatura da superfície do mar (TSM) dos oceanos globais, índices climáticos e precipitação. A motivação que conduziu esta investigação esteve atrelada aos conhecimentos teóricos trazidos pelas contribuições de Walker (1924 e 1928), Walker e Bliss (1932), Bjerknes (1969), Trop (1965), Hoskins e Karoly (1981), Horel e Wallace (1981), Karoly (1989) e Müller e Ambrizzi (2009) sobre os papéis desempenhados por forçantes oceânicas (aquecimento anômalo das TSM) dentro dos sistemas climáticos. As hipóteses norteadoras para a realização deste trabalho foram de que algumas regiões específicas de TSM dos oceanos, assim como padrões climáticos estabelecidos a partir de alguns índices seriam capazes de influenciar o comportamento fluvial de rios no centro da América do Sul. A partir de levantadas estas hipóteses foram realizadas uma série de cálculos de correlação entre as vazões do rio Miranda e (média regional) do Pantanal, com as séries de dados de TSM, índices climáticos e precipitação. Os testes de correlação foram importantes para a identificação geral de quais áreas de TSM e índices climáticos tinham mais associação estatística com as duas séries de vazões utilizadas. Os primeiros resultados dos testes de correlação em lag entre TSM dos oceanos globais e as vazões dos postos regional do Pantanal e do rio Miranda permitiram a identificação de muito mais áreas de TSM sobre o oceano Pacífico do que sobre o oceano Atlântico. Além deste fato, os mapas de correlação em lags temporais, demonstraram valores de correlação mais estáveis com até quatro meses de defasagens de TSM com relação às duas séries de vazões. A partir deste lag de defasagem, os sinais de correlação começaram a sofrer diminuições significativas dentro das bacias dos oceanos Atlântico e Pacífico para ambas as séries de vazão. Outro padrão de correlação observado, exclusivamente, para a série do posto de vazão do rio Miranda, foi o aparecimento de anomalias negativas dentro da bacia do Índico tropical e subtropical a partir dos lags seis e sete e, sua intensificação quanto mais defasada os tempos. Além destes padrões de anomalias, os resultados entre TSM e vazão dos rios evidenciaram que, possivelmente, o oceano Atlântico (norte e sul) influencia a vazão dos rios do centro da América do Sul dentro de uma escala interdecadal (sobretudo as regiões dos extratropicos) e o oceano Pacífico exerce suas influências dentro de uma escala inter-anual (sobretudo as regiões tropicais e subtropicais). Além destas constatações, desconfia-se que a bacia norte subtropical do Pacífico, também, exerça forças dentro de uma escala decadal, porém atreladas a própria variabilidade da Oscilação Decadal do Pacífico (PDO). Outro padrão encontrado entre as correlações de TSM dos oceanos e os dados de vazões foi a do padrão de anomalias horseshoes dentro da bacia do Pacífico Tropical, o que sugere grandes influências da faixa tropical do Pacífico, além de reforçar a hipótese de que esta região condiciona uma variabilidade inter-anual, nas vazões dos rios do centro da América do Sul. Além destas observações iniciais, os resultados de correlações entre índices climáticos (PDO, SAM, NAO, SOI e as regiões de Niños1+2, 3, 3+4 e 4) e vazões dos rios evidenciaram relações estatísticas bem distintas em todo o Pantanal. Os resultados mostraram que o índice da região de Niño1+2, estatisticamente, se correlaciona com áreas do Pantanal de forma bem homogênea, diferentemente, dos demais índices que têm regiões exclusivas de correlação estatística. Os resultados das correlações da PDO, estatisticamente, mostram uma quase influência em toda a área de estudo, exceto a porção ao sul. Os resultados das correlações do índice SOI e a região de Niño3. 4, estatisticamente, aparecem mais fortes dentro das porções centrais e norte da área de estudo. Já a SAM, apresentou valores de significância estatística de correlação, somente, na porção sul e a NAO apenas com a região nordeste do Pantanal. Já as áreas de Niño3 e (Niño4) apresentaram valores de significância estatística mais relevante com as áreas centrais (centrais e nordeste) do Pantanal. A realização dos cálculos de correlação possibilitou a identificação de um conjunto de variáveis independentes que, estatisticamente, se apresentaram com maiores dependências nos estudos de modelagem da vazão. A partir destas observações, estas variáveis independentes serviram como dados para os modelos de regressão linear múltipla para a realização da simulação e previsão da vazão no Pantanal. O modelo de simulação selecionou os dados de TSM das regiões: Equatorial Sul (região do Niño1+2, próximo a costa oeste do continente sul-americano), a região do Pacífico Norte (golfo do Alaska), a região Equatorial do Pacífico (região leste da costa da Ásia), região extratropical central do Pacífico Sul, a região do Atlântico Tropical Norte (próximo a costa oeste da Mauritânia e Marrocos, na África) e a região extratropical do Atlântico Norte (próxima a baixa da Islândia). Os índices climáticos selecionados foram: o Modo Anular Sul (SAM), o Índice da Oscilação Sul (IOS), o Índice da Oscilação do Atlântico Norte e os índices das regiões de Niños4, 1+2 e 3+4, da bacia do Pacífico Equatorial. A seleção destas variáveis foi capaz de explicar 99.1% (95.5%) da variância total das vazões média regional do Pantanal (rio Miranda). Já o modelo de previsão conseguiu identificar as seguintes variáveis independentes: Pacífico Equatorial (região de niño 1+2 e de nino 3+4), Pacífico Norte subtropical (golfo do Alaska), Atlântico Norte tropical (Açores), Atlântico Norte extratropical (Islândia) e o Pacífico Central Sul extratropical. Estas variáveis, estatisticamente, para o modelo de previsão conseguem antever a vazão com até três meses de antecedência e conseguiu explicar, aproximadamente, 57% da variância total da vazão média regional do Pantanal. Além disso, os testes de validação do modelo de previsão se apresentaram com valores baixos de erros, apenas 31.7%. Os resultados do R2 e da margem de erro do modelo de previsão mostraram que, estatisticamente, o modelo mensal de previsão é bem relevante o que se mostra, estatisticamente, bastante útil em pesquisas de previsão da vazão. Após todo este arcabouço estatístico descrito em metodologia e resultados acima, o trabalho foi analisando a partir de um ponto de vista da dinâmica da atmosfera. A primeira análise com um viés um pouco mais dinâmico foi a dos padrões atmosféricos: vorticidade e divergência (250 e 850 mb), escoamento em 850 hPa e velocidade vertical (500 e 850 mb). A segunda análise com este viés foi realizada a partir dos estudos das anomalias de função de corrente () em 250 mb. O padrão atmosférico anômalo associado aos sub-períodos da vazão apresentaram anomalias negativas e positivas. O comportamento destas anomalias da vazão foi associado aos campos atmosféricos. Os resultados destes campos mostraram que a variabilidade atmosférica é determinante às anomalias observadas da vazão. Já as análises de função de corrente () em 250 mb foram realizadas para períodos específicos, marcados pela existência de anomalias de TSM positivas, negativas e neutra e tiveram, exclusivamente, o objetivo de identificar se as anomalias de TSM (em períodos específicos) seriam capazes de se comportar como forçantes térmicas e promover propagações de ondas de Rossby capazes de modificar os campos atmosféricas e, indiretamente, interferir na variabilidade atmosférica e fluvial do centro da América do Sul. Todos os períodos de escolha das TSM e das análises das anomalias de função de corrente () foram coincidentes com as fases de anomalias positivas e negativas da vazão. Os resultados obtidos a partir destas análises mostraram que as áreas tropicais oceânicas são geradoras de perturbações atmosféricas que se propagam em direção aos subtrópicos e podem, possivelmente, gerar modificações dentro dos padrões atmosféricos. Além disso, os resultados mostraram que pode haver a interferência de uma ou mais forçantes que interferem em conjunto e são capazes de alterar as propagações de ondas de Rossby já existentes. Por fim, acredita-se que as grandes contribuições desta pesquisa tenha sido o fato de ter identificado as, possíveis, variáveis independentes (regiões de TSM e índices climáticos) que mais conseguem exercer influência na variabilidade fluvial dos rios do Pantanal Brasileiro. / The aim of this study was to evaluate the temporal association between the flow of rivers of the Brazilian Pantanal with information about sea surface temperature (SST) in the global oceans, precipitation and climate index. The motivation that led this research was linked to theoretical knowledge brought by the contributions of Walker (1924 and 1928), Walker and Bliss (1932), Bjerknes (1969), Trop (1965), Hoskins and Karoly (1981), Horel and Wallace (1981), Karoly (1989) and Müller and Ambrizzi (2009) on the roles played by oceanic forcings (anomalous warming of SST) in the climate system. The guiding hypothesis for this study was that specific regions of SST oceans, as well as weather patterns established from some index would be able to influence the behavior of river outflows in the center of South America. On the other hand these hypotheses made a series of calculations of correlation between the flow of the river and Miranda (regional average) of the Pantanal, with the series of SST, precipitation and climate index. Correlation tests were important to identify areas where SST and climate index had more statistical association with the two sets of river outflows used. The first test results of the lag correlation between SST in the global oceans and rivers outflow of the regional stations of the Pantanal and the Miranda allowed the identification of more areas of SST over the Pacific Ocean than the Atlantic ocean. On the other hand, correlation maps for temporal lags showed correlation values more stable with up to four months of lags of SST with respect to two sets of river outflows. Here, the correlation signals began to have significant decreases in the basins of the Atlantic and Pacific oceans for both series of river outflow. Another pattern of correlation observed exclusively for the series of river flow station Miranda was the appearance of negative anomalies in the basin of the tropical and subtropical Indian Ocean from six to seven months of delay. That is the intensification is more delay. Results between SST and river flows showed that possibly the Atlantic Ocean (north and south) influences the river flows from the center of South America on a scale interdecadal (mainly the regions of the extratropics) and the Pacific Ocean exerts its influence within an inter-annual scale (mainly tropical and subtropical regions). On the other hand, suspects that the subtropical North Pacific basin also exert forces in a decadal scale, however linked the variability of the Pacific Decadal Oscillation (PDO). Another pattern found correlations between SST and ocean data river outflows was the pattern of anomalies horseshoes in the tropical Pacific basin, which suggests more influences in the tropical zone of the Pacific, and reinforce the hypothesis that this region affects an inter-annual variability in river flows from the center of South America. Furthermore, the results of correlations between climate index (PDO, SAM, NAO, and SOI regions Niños1 +2, 3, 3.4 and 4) and river flows showed distinct statistical relationships in the Pantanal. The results showed that the index of the region Niño1 +2 statistically correlates with areas of the Pantanal is homogeneous, in contrast, the other indexes that have only a regions of statistical correlation. The results of the correlations of the PDO, statistically, show an influence on the almost the entire study area, except the south portion. The results of the correlations of the index and the SOI region Niño3.4, statistically, appear stronger in the central and northern portions. The SAM values were statistically significant correlation only in the southern portion and the NAO only northeastern Pantanal. Areas of Niño3 and (Niño4) showed statistical significance values more relevant to the central areas (central and northeast) of the Pantanal. The achievement of the correlation calculations allowed the identification of a set of independent variables that statistically, if presented with more dependencies in modeling studies of river outflow. From these observations, this data served as independent variables for multiple linear regression models to make the simulation and prediction of river outflow in the Pantanal. The simulation model selected the SST regions: the South Equatorial (Niño1+2 region, near the west coast of South America), the North Pacific (Gulf of Alaska), the Equatorial Pacific region (eastern region coast of Asia), extratropical central region of the South Pacific, Tropical North Atlantic region (near the west coast of Mauritania and Morocco, Africa) region and the extratropical North Atlantic (near low Iceland). The climate indexes selected were: the Southern Annular Mode (SAM), the Southern Oscillation Index (SOI), the index of the North Atlantic Oscillation and the regions of Niños4, 1 +2 and 3.4, equatorial Pacific. The selection of these variables could explain 99.1% (95.5%) of the total variance of the regional average river outflow of the Pantanal (Rio Miranda). The model prediction was able to identify the following independent variables: the equatorial Pacific (Niño 1 +2 region and Niño 3 +4), subtropical North Pacific (Gulf of Alaska) tropical North Atlantic (Azores), extratropical North Atlantic (Iceland ) and the Central South Pacific extratropical. These variables, statistically, wer able to explain approximately 57% of the total variance of the regional average river outflow of Pantanal. Furthermore, the validation tests of the prediction model is able to present error of the only 31.7%. The results of R2 and the margin of error of the prediction model showed that, statistically, the model monthly prediction is relevant as shown, statistically, very useful in research to predict the river outflow. After all this statistical framework methodology and results described above, was analyzing the dynamics of the atmosphere. The first most dynamic analysis was the weather patterns of vorticity and divergence (250 and 850 mb), the low level jet (850 mb) and vertical velocity (500 and 850 mb). The second analysis was based on studies of anomalous stream function () at 250 mb. The anomalous atmospheric patterns associated with subperiods of the river outflow showed positive and negative anomalies. The behavior of these anomalies was associated with atmospheric fields. The results of these fields showed that the atmospheric variability is crucial to the river outflow anomalies observed. Analyzes of stream function () at 250 mb were performed for specific periods, marked by the existence of positive SST anomalies, negative and neutral and had, exclusively, aimed of the identify if the SST anomalies (in particular periods) would be able to behave as thermal forcing and promote propagation of Rossby waves, that could modify the atmospheric fields and indirectly affect the atmospheric variability and river outflow from the center of South America. All periods of choice and analysis of SST anomalies in stream function () were coincident with the phases of positive and negative anomalies of the river outflow. The results from these analyzes showed that the tropical ocean areas are generating atmospheric disturbances that if propagated towards the subtropics and can possibly generate changes in the weather patterns. Furthermore, the results showed that may have interfered one or more forces that interfering together and are able to alter the propagation of waves Rossby. Finally, we believed that more contributions of this research was the fact that we identified them, possible independent variables (regions of SST and climate indices) that can exert more influence in the variability of river outflows of the Brazilian Pantanal.
107

The impact of tropical sea surface temperature perturbations on atmospheric circulation over north Canada and Greenland

McCrystall, Michelle Roisin January 2018 (has links)
Identifying the drivers of Arctic climate variability is essential for understanding the recent rapid changes in local climate and determining the mechanisms that cause them. Remote tropical sea surface temperatures (SST) have been identified in previous studies as having contributed to the recent positive trends in surface temperature and geopotential height at 200 hPa over north Canada and Greenland (1979-2012) through poleward propagating Rossby waves. However, the source and direction of wave propagation on to north Canada and Greenland (NCG) differs across climate datasets indicating that there are still uncertainties surrounding the mechanisms for how the tropics influence the NCG climate. This thesis aims to further investigate the robustness of the trends over NCG and understand how circulation in this region responds to imposed tropical SST perturbations. The eddy 200 hPa geopotential height (Z200) trends over NCG are assessed in a number of different datasets and compared to the response of eddy Z200 over NCG to imposed tropical SST perturbations in a number of sensitivity studies using the HadGEM3 atmosphere-only model. These model experiments are forced with observed differences in SSTs from the beginning and end of the satellite record (1979-1988 and 2003-2012), with spatial perturbations for [i] the entire tropics, [ii] global SSTs, [iii] the tropical Pacific only, [iv] the tropical Atlantic SST only, [v] the tropical Indian Ocean only. The positive spatial trends of eddy Z200 over NCG from ERA-Interim reanalysis is largely captured in ensemble means of two available climate datasets, UPSCALE and AMIP, indicating that this is a robust climate pattern, however, these trends appear to be stronger in the latter part of the record specifically over the UPSCALE period (1985 to 2011). The model sensitivity studies show that a negative eddy Z200 anomaly over NCG was found in response to all imposed tropical SST perturbations (2003-2012) relative to a background state (1979-1988). This was due a stationary trough over the region that was able to intensify in response to a lack of a strong anomalous wave forcing from changes in mid-tropospheric temperature and zonal winds. The forcing from the tropical Atlantic, relative to the other tropical ocean basins, resulted in the largest eddy Z200 response over NCG, indicating its dominance in forcing the large scale tropical signal. The influence of extratropical SST perturbations relative to tropical SST perturbations were also investigated and it was demonstrated that this negative anomaly is largely driven by the change in tropical sea surface temperatures.
108

Variabilidade climática nos oceanos e a vazão fluvial no Planalto Brasileiro / Oceans and climate variability in the river flow in Brazilian Pantanal

Carlos Batista da Silva 05 November 2012 (has links)
O objetivo do presente estudo foi avaliar a associação temporal entre a vazão de rios do Pantanal brasileiro com as informações sobre a temperatura da superfície do mar (TSM) dos oceanos globais, índices climáticos e precipitação. A motivação que conduziu esta investigação esteve atrelada aos conhecimentos teóricos trazidos pelas contribuições de Walker (1924 e 1928), Walker e Bliss (1932), Bjerknes (1969), Trop (1965), Hoskins e Karoly (1981), Horel e Wallace (1981), Karoly (1989) e Müller e Ambrizzi (2009) sobre os papéis desempenhados por forçantes oceânicas (aquecimento anômalo das TSM) dentro dos sistemas climáticos. As hipóteses norteadoras para a realização deste trabalho foram de que algumas regiões específicas de TSM dos oceanos, assim como padrões climáticos estabelecidos a partir de alguns índices seriam capazes de influenciar o comportamento fluvial de rios no centro da América do Sul. A partir de levantadas estas hipóteses foram realizadas uma série de cálculos de correlação entre as vazões do rio Miranda e (média regional) do Pantanal, com as séries de dados de TSM, índices climáticos e precipitação. Os testes de correlação foram importantes para a identificação geral de quais áreas de TSM e índices climáticos tinham mais associação estatística com as duas séries de vazões utilizadas. Os primeiros resultados dos testes de correlação em lag entre TSM dos oceanos globais e as vazões dos postos regional do Pantanal e do rio Miranda permitiram a identificação de muito mais áreas de TSM sobre o oceano Pacífico do que sobre o oceano Atlântico. Além deste fato, os mapas de correlação em lags temporais, demonstraram valores de correlação mais estáveis com até quatro meses de defasagens de TSM com relação às duas séries de vazões. A partir deste lag de defasagem, os sinais de correlação começaram a sofrer diminuições significativas dentro das bacias dos oceanos Atlântico e Pacífico para ambas as séries de vazão. Outro padrão de correlação observado, exclusivamente, para a série do posto de vazão do rio Miranda, foi o aparecimento de anomalias negativas dentro da bacia do Índico tropical e subtropical a partir dos lags seis e sete e, sua intensificação quanto mais defasada os tempos. Além destes padrões de anomalias, os resultados entre TSM e vazão dos rios evidenciaram que, possivelmente, o oceano Atlântico (norte e sul) influencia a vazão dos rios do centro da América do Sul dentro de uma escala interdecadal (sobretudo as regiões dos extratropicos) e o oceano Pacífico exerce suas influências dentro de uma escala inter-anual (sobretudo as regiões tropicais e subtropicais). Além destas constatações, desconfia-se que a bacia norte subtropical do Pacífico, também, exerça forças dentro de uma escala decadal, porém atreladas a própria variabilidade da Oscilação Decadal do Pacífico (PDO). Outro padrão encontrado entre as correlações de TSM dos oceanos e os dados de vazões foi a do padrão de anomalias horseshoes dentro da bacia do Pacífico Tropical, o que sugere grandes influências da faixa tropical do Pacífico, além de reforçar a hipótese de que esta região condiciona uma variabilidade inter-anual, nas vazões dos rios do centro da América do Sul. Além destas observações iniciais, os resultados de correlações entre índices climáticos (PDO, SAM, NAO, SOI e as regiões de Niños1+2, 3, 3+4 e 4) e vazões dos rios evidenciaram relações estatísticas bem distintas em todo o Pantanal. Os resultados mostraram que o índice da região de Niño1+2, estatisticamente, se correlaciona com áreas do Pantanal de forma bem homogênea, diferentemente, dos demais índices que têm regiões exclusivas de correlação estatística. Os resultados das correlações da PDO, estatisticamente, mostram uma quase influência em toda a área de estudo, exceto a porção ao sul. Os resultados das correlações do índice SOI e a região de Niño3. 4, estatisticamente, aparecem mais fortes dentro das porções centrais e norte da área de estudo. Já a SAM, apresentou valores de significância estatística de correlação, somente, na porção sul e a NAO apenas com a região nordeste do Pantanal. Já as áreas de Niño3 e (Niño4) apresentaram valores de significância estatística mais relevante com as áreas centrais (centrais e nordeste) do Pantanal. A realização dos cálculos de correlação possibilitou a identificação de um conjunto de variáveis independentes que, estatisticamente, se apresentaram com maiores dependências nos estudos de modelagem da vazão. A partir destas observações, estas variáveis independentes serviram como dados para os modelos de regressão linear múltipla para a realização da simulação e previsão da vazão no Pantanal. O modelo de simulação selecionou os dados de TSM das regiões: Equatorial Sul (região do Niño1+2, próximo a costa oeste do continente sul-americano), a região do Pacífico Norte (golfo do Alaska), a região Equatorial do Pacífico (região leste da costa da Ásia), região extratropical central do Pacífico Sul, a região do Atlântico Tropical Norte (próximo a costa oeste da Mauritânia e Marrocos, na África) e a região extratropical do Atlântico Norte (próxima a baixa da Islândia). Os índices climáticos selecionados foram: o Modo Anular Sul (SAM), o Índice da Oscilação Sul (IOS), o Índice da Oscilação do Atlântico Norte e os índices das regiões de Niños4, 1+2 e 3+4, da bacia do Pacífico Equatorial. A seleção destas variáveis foi capaz de explicar 99.1% (95.5%) da variância total das vazões média regional do Pantanal (rio Miranda). Já o modelo de previsão conseguiu identificar as seguintes variáveis independentes: Pacífico Equatorial (região de niño 1+2 e de nino 3+4), Pacífico Norte subtropical (golfo do Alaska), Atlântico Norte tropical (Açores), Atlântico Norte extratropical (Islândia) e o Pacífico Central Sul extratropical. Estas variáveis, estatisticamente, para o modelo de previsão conseguem antever a vazão com até três meses de antecedência e conseguiu explicar, aproximadamente, 57% da variância total da vazão média regional do Pantanal. Além disso, os testes de validação do modelo de previsão se apresentaram com valores baixos de erros, apenas 31.7%. Os resultados do R2 e da margem de erro do modelo de previsão mostraram que, estatisticamente, o modelo mensal de previsão é bem relevante o que se mostra, estatisticamente, bastante útil em pesquisas de previsão da vazão. Após todo este arcabouço estatístico descrito em metodologia e resultados acima, o trabalho foi analisando a partir de um ponto de vista da dinâmica da atmosfera. A primeira análise com um viés um pouco mais dinâmico foi a dos padrões atmosféricos: vorticidade e divergência (250 e 850 mb), escoamento em 850 hPa e velocidade vertical (500 e 850 mb). A segunda análise com este viés foi realizada a partir dos estudos das anomalias de função de corrente () em 250 mb. O padrão atmosférico anômalo associado aos sub-períodos da vazão apresentaram anomalias negativas e positivas. O comportamento destas anomalias da vazão foi associado aos campos atmosféricos. Os resultados destes campos mostraram que a variabilidade atmosférica é determinante às anomalias observadas da vazão. Já as análises de função de corrente () em 250 mb foram realizadas para períodos específicos, marcados pela existência de anomalias de TSM positivas, negativas e neutra e tiveram, exclusivamente, o objetivo de identificar se as anomalias de TSM (em períodos específicos) seriam capazes de se comportar como forçantes térmicas e promover propagações de ondas de Rossby capazes de modificar os campos atmosféricas e, indiretamente, interferir na variabilidade atmosférica e fluvial do centro da América do Sul. Todos os períodos de escolha das TSM e das análises das anomalias de função de corrente () foram coincidentes com as fases de anomalias positivas e negativas da vazão. Os resultados obtidos a partir destas análises mostraram que as áreas tropicais oceânicas são geradoras de perturbações atmosféricas que se propagam em direção aos subtrópicos e podem, possivelmente, gerar modificações dentro dos padrões atmosféricos. Além disso, os resultados mostraram que pode haver a interferência de uma ou mais forçantes que interferem em conjunto e são capazes de alterar as propagações de ondas de Rossby já existentes. Por fim, acredita-se que as grandes contribuições desta pesquisa tenha sido o fato de ter identificado as, possíveis, variáveis independentes (regiões de TSM e índices climáticos) que mais conseguem exercer influência na variabilidade fluvial dos rios do Pantanal Brasileiro. / The aim of this study was to evaluate the temporal association between the flow of rivers of the Brazilian Pantanal with information about sea surface temperature (SST) in the global oceans, precipitation and climate index. The motivation that led this research was linked to theoretical knowledge brought by the contributions of Walker (1924 and 1928), Walker and Bliss (1932), Bjerknes (1969), Trop (1965), Hoskins and Karoly (1981), Horel and Wallace (1981), Karoly (1989) and Müller and Ambrizzi (2009) on the roles played by oceanic forcings (anomalous warming of SST) in the climate system. The guiding hypothesis for this study was that specific regions of SST oceans, as well as weather patterns established from some index would be able to influence the behavior of river outflows in the center of South America. On the other hand these hypotheses made a series of calculations of correlation between the flow of the river and Miranda (regional average) of the Pantanal, with the series of SST, precipitation and climate index. Correlation tests were important to identify areas where SST and climate index had more statistical association with the two sets of river outflows used. The first test results of the lag correlation between SST in the global oceans and rivers outflow of the regional stations of the Pantanal and the Miranda allowed the identification of more areas of SST over the Pacific Ocean than the Atlantic ocean. On the other hand, correlation maps for temporal lags showed correlation values more stable with up to four months of lags of SST with respect to two sets of river outflows. Here, the correlation signals began to have significant decreases in the basins of the Atlantic and Pacific oceans for both series of river outflow. Another pattern of correlation observed exclusively for the series of river flow station Miranda was the appearance of negative anomalies in the basin of the tropical and subtropical Indian Ocean from six to seven months of delay. That is the intensification is more delay. Results between SST and river flows showed that possibly the Atlantic Ocean (north and south) influences the river flows from the center of South America on a scale interdecadal (mainly the regions of the extratropics) and the Pacific Ocean exerts its influence within an inter-annual scale (mainly tropical and subtropical regions). On the other hand, suspects that the subtropical North Pacific basin also exert forces in a decadal scale, however linked the variability of the Pacific Decadal Oscillation (PDO). Another pattern found correlations between SST and ocean data river outflows was the pattern of anomalies horseshoes in the tropical Pacific basin, which suggests more influences in the tropical zone of the Pacific, and reinforce the hypothesis that this region affects an inter-annual variability in river flows from the center of South America. Furthermore, the results of correlations between climate index (PDO, SAM, NAO, and SOI regions Niños1 +2, 3, 3.4 and 4) and river flows showed distinct statistical relationships in the Pantanal. The results showed that the index of the region Niño1 +2 statistically correlates with areas of the Pantanal is homogeneous, in contrast, the other indexes that have only a regions of statistical correlation. The results of the correlations of the PDO, statistically, show an influence on the almost the entire study area, except the south portion. The results of the correlations of the index and the SOI region Niño3.4, statistically, appear stronger in the central and northern portions. The SAM values were statistically significant correlation only in the southern portion and the NAO only northeastern Pantanal. Areas of Niño3 and (Niño4) showed statistical significance values more relevant to the central areas (central and northeast) of the Pantanal. The achievement of the correlation calculations allowed the identification of a set of independent variables that statistically, if presented with more dependencies in modeling studies of river outflow. From these observations, this data served as independent variables for multiple linear regression models to make the simulation and prediction of river outflow in the Pantanal. The simulation model selected the SST regions: the South Equatorial (Niño1+2 region, near the west coast of South America), the North Pacific (Gulf of Alaska), the Equatorial Pacific region (eastern region coast of Asia), extratropical central region of the South Pacific, Tropical North Atlantic region (near the west coast of Mauritania and Morocco, Africa) region and the extratropical North Atlantic (near low Iceland). The climate indexes selected were: the Southern Annular Mode (SAM), the Southern Oscillation Index (SOI), the index of the North Atlantic Oscillation and the regions of Niños4, 1 +2 and 3.4, equatorial Pacific. The selection of these variables could explain 99.1% (95.5%) of the total variance of the regional average river outflow of the Pantanal (Rio Miranda). The model prediction was able to identify the following independent variables: the equatorial Pacific (Niño 1 +2 region and Niño 3 +4), subtropical North Pacific (Gulf of Alaska) tropical North Atlantic (Azores), extratropical North Atlantic (Iceland ) and the Central South Pacific extratropical. These variables, statistically, wer able to explain approximately 57% of the total variance of the regional average river outflow of Pantanal. Furthermore, the validation tests of the prediction model is able to present error of the only 31.7%. The results of R2 and the margin of error of the prediction model showed that, statistically, the model monthly prediction is relevant as shown, statistically, very useful in research to predict the river outflow. After all this statistical framework methodology and results described above, was analyzing the dynamics of the atmosphere. The first most dynamic analysis was the weather patterns of vorticity and divergence (250 and 850 mb), the low level jet (850 mb) and vertical velocity (500 and 850 mb). The second analysis was based on studies of anomalous stream function () at 250 mb. The anomalous atmospheric patterns associated with subperiods of the river outflow showed positive and negative anomalies. The behavior of these anomalies was associated with atmospheric fields. The results of these fields showed that the atmospheric variability is crucial to the river outflow anomalies observed. Analyzes of stream function () at 250 mb were performed for specific periods, marked by the existence of positive SST anomalies, negative and neutral and had, exclusively, aimed of the identify if the SST anomalies (in particular periods) would be able to behave as thermal forcing and promote propagation of Rossby waves, that could modify the atmospheric fields and indirectly affect the atmospheric variability and river outflow from the center of South America. All periods of choice and analysis of SST anomalies in stream function () were coincident with the phases of positive and negative anomalies of the river outflow. The results from these analyzes showed that the tropical ocean areas are generating atmospheric disturbances that if propagated towards the subtropics and can possibly generate changes in the weather patterns. Furthermore, the results showed that may have interfered one or more forces that interfering together and are able to alter the propagation of waves Rossby. Finally, we believed that more contributions of this research was the fact that we identified them, possible independent variables (regions of SST and climate indices) that can exert more influence in the variability of river outflows of the Brazilian Pantanal.
109

Tides, Rossby and Kelvin waves simulated with the COMMA-LIM Model

Fröhlich, Kristina, Pogoreltsev, Alexander, Jacobi, Christoph 18 January 2017 (has links)
A 48-layer version of the COMMA-LIM (Cologne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) three-dimensional global mechanistic model of the Earth\''s atmosphere from 0 km to 135 km with logarithmic pressure height coordinates was developed. The model is capable of reproducing the global structures and propagation of different planetary waves in the middle atmosphere. The contribution of gravity waves, tides, Rossby and Kelvin waves into the zonally averaged momentum budget of the mesosphere / lower thermosphere region has been investigated. / Eine neue Version des COMMA-LIM (Cologne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) wurde im Zusammenhang mit der Erhöhung der vertikalen Schichtauflösung entwickelt. Das COMMA ist ein dreidimensionales globales mechanistisches Modell der Erdatmosphäre mit einer Ausdehnung von ca. 0 – 135 km in logarithmischen Druckkoordinaten. Damit können globale Eigenschaften der mittleren Atmosphäre sowie die Ausbreitung verschiedener planetarer Wellen nachvollzogen werden. Die Beiträge der Schwerewellen, thermischer Gezeiten, Rossby und Kelvin Wellen zur zonal gemitteltem Impulsbalance der Mesosphäre und unteren Thermosphäre wurden untersucht.
110

Intensification rapide des cyclones tropicaux du sud-ouest de l’océan Indien (SWIO) : dynamique interne et influences externes / Tropical Cyclone rapid intensification in the southwest Indian ocean : internal processes and external influences

Leroux, Marie-Dominique 13 December 2012 (has links)
Dans un contexte international, la prévision d'intensité des cyclones tropicaux connaît encore de graves déficiences tandis que la prévision de trajectoire de ces phénomènes météorologiques extrêmes s'est grandement améliorée ces dernières décennies. Une source d'erreur pour la prévision d'intensité est le manque de connaissance des processus physiques qui régissent l'évolution de la structure et de l'intensité des cyclones. Cette thèse, proposée dans le cadre des responsabilités du Centre Météorologique Régional Spécialisé (CMRS) de la Réunion et des axes de recherche du LACy et du CNRM, a pour but d'améliorer la prévision numérique et la compréhension des mécanismes de changement de structure et d'intensité des cyclones dans le sud-ouest de l'océan Indien. On observe statistiquement dans le bassin de fréquents déferlements d'ondes de Rossby qui correspondent à une intrusion des talwegs d'altitude depuis les moyennes latitudes vers les régions où évoluent les cyclones. Ces déferlements advectent dans la troposphère tropicale de l'air d'origine stratosphérique à fort tourbillon potentiel (PV). Le cœur d'un cyclone tropical étant caractérisé par un vortex cyclonique de fort PV, il est donc légitime de se demander si de tels talwegs sont capables de « nourrir » un cyclone en déferlant jusqu'à lui, et l'intensifier par superposition de PV. D'un autre côté, l'approche d'un talweg est associée à d'autres facteurs pouvant jouer en défaveur d'une intensification, comme un fort cisaillement vertical de vent. L'étude de processus est réalisée sur le cyclone Dora (2007) avec le modèle opérationnel du CMRS sur le bassin, Aladin-Réunion. Ce modèle hydrostatique à aire limitée bénéficie d'une résolution horizontale de 8 km et de son propre schéma d'assimilation 3Dvar avec bogus de vent. Un tel bogus permet d'affiner la structure du cyclone à l'instant initial en ajoutant des observations de vent déduites d'un profil analytique et des paramètres de structure du cyclone estimés par les images satellites. Des diagnostiques sur les variables thermodynamiques en sortie de modèle montrent que la phase d'intensification rapide de Dora est bien associée à l'advection de tourbillon potentiel (PV) en provenance du talweg. Bien que fortement cisaillé, le système parvient à s'intensifier grâce à la forte inclinaison du talweg qui advecte du PV au cœur du cyclone en 2 temps et à 2 niveaux (haute et moyenne troposphère). Lorsque le talweg est au plus proche du cyclone, il force un processus dynamique interne appelé « cycle de remplacement du mur de l'œil ». On observe une inclinaison et un renforcement des vitesses verticales à l'extérieur du mur de l'œil principal, associé à une accélération de la circulation cyclonique tangentielle par advection de moment angulaire sur toute l'épaisseur de la troposphère dans cette zone annulaire (mis en évidence par les flux d'Eliassen-Palm). Un second maximum de vent relatif apparaît alors et une deuxième phase d'intensification rapide s'ensuit avec la contraction du mur secondaire. Le forçage de processus internes par une influence externe (un talweg) semble donc être le moteur de l'intensification rapide de Dora dans un environnement cisaillé, et potentiellement celui d'autres cyclones dans le bassin qui sont approchés par des talwegs d'altitude. Les prévisionnistes du CMRS sont invités à surveiller les champs de PV de tels systèmes, en attendant que de plus amples diagnostiques soient réalisés avec l'outil d'inversion du tourbillon potentiel développé sur le modèle global Arpège. / Despite significant improvements in Tropical Cyclone (TC) track forecasts over the past few decades, anticipating the sudden intensity changes of TCs remains a major operational issue. The main purpose of this thesis is to analyze TC rapid intensification processes in relation with external forcing induced by upper-level troughs originating from the mid-latitudes. The impact of initial storm structure on storm evolution and prediction is also documented. An objective definition for rapid intensification in the southwest Indian Ocean is first proposed. The location and frequency of TC-trough interactions are identified, as well as TC-trough arrangements conducive to TC intensification. An interesting study case, TC Dora (2007), is chosen to run numerical simulations initialized with synthetic TC observations blended in a global analysis. The simulated TC-trough interaction is intricate with potential vorticity (PV) advection from the trough into the TC core at mid and upper levels. Vortex intensification first occurs inside the eyewall and results from PV superposition. Further intensification is associated with a subsequent secondary eyewall formation triggered by external forcing from the trough. The numerical model is able to reproduce the main features associated with outer eyewall spin-up, inner eyewall spin-down, and their effects on vortex intensity changes. Another numerical study examines typhoons in the northwest Pacific and demonstrates the critical role played by initial vortex structure in TC track and intensity prediction. Upgrading the initial specification of a TC inner-core structure in numerical models is recommended for future TC prediction improvements.

Page generated in 0.0361 seconds