• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the structure, function and regulation of Ruminococcus gnavus E1 [alpha]-galactosidases

Cervera -Tison, Marine 22 November 2011 (has links)
Ruminococcus gnavus E1 appartient au groupe des Firmicutes, l’un des deux groupes dominants du microbiote intestinal humain. Les a-galactosidases sont des glycosides hydrolase (GH) actives sur des substrats contenant des galactoses liés en a. Elles sont très largement distribuées dans tous les domaines du vivant, bactéries, champignons, plantes et animaux, mais sont absentes du tractus digestif humain. Ces travaux portent sur les caractéristiques enzymatiques et la régulation de l’expression de deux -galactosidase, Aga1 et Aga2, de R. gnavus E1. L’analyse bioinformatique de leur environnement génétique respectif indique une organisation simple pour Aga1 tandis qu’Aga2 est organisée en opéron. Elles ont été exprimées en système hétérologue chez E. coli, purifiées et leurs propriétés biochimiques ainsi que leurs spécificités de substrat ont été analysées. Le profil de croissance de la souche indique une préférence pour des substrats complexes (raffinose et mélbiose) faisant intervenir les a-galactosidase pour leurs utilisations ainsi que leur assimilation. / Ruminococcus gnavus E1 belongs to the Firmicutes, one of the two dominant groups in the human gut microbiota. a-galactosidases are glycoside hydrolases (GH) active on a-galactoside containing substrates. They are widely distributed through all the domains of life: bacteria, fungi, plants, and animals, but are absent from the human gastro-intestinal tract.Here we report the enzymatic characteristics and regulation of expression for two GH36 -galactosidases, Aga1 and Aga2, from R. gnavus E1. Bioinformatics analysis of their respective genetic environment showed a different organisation, Aga1 having a simple organisation while Aga2 is organised as part of an operon. They were heterologously expressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. The growth pattern of the strain in minimum media demonstrates a preference for complex substrates (melibiose and raffinose) that require the expression of the a-galactosidases for their utilisation and assimilation
2

Caractérisation d'un nouveau RiPP issu du microbiote intestinal : la Ruminococcin C / Characterization of a new RiPP derived from the intestinal microbiota : Ruminococcin C

Balty, Clémence 21 November 2019 (has links)
Le microbiote humain est constitué de milliers d’espèces bactériennes qui synthétisent de nombreux métabolites secondaires. Cependant, notre connaissance des produits naturels dérivés du microbiome est encore limitée. Parmi eux, les RiPPs (Ribosomally Synthesized and Post-translationally modified Peptides) apparaissent comme une famille majeure de produits naturels possédant diverses structures et fonctions biologiques dont des propriétés antibiotiques, en faisant une famille de molécules d’intérêt majeur pour la santé publique. La biosynthèse des RiPPs commence par la traduction d’un peptide précurseur, qui est ensuite maturé par l’action d’une ou plusieurs enzymes avant l’excision d’une séquence signal et l’export du produit naturel actif. La diversité structurale et fonctionnelle des RiPPs démontre la nécessité de la compréhension des voies de biosynthèse de ces produits naturels, de l’étude systématique des mécanismes de modification et de la caractérisation des maturases associées. En particulier, une famille de métallo-enzymes, les enzymes à radical S-adénosyl-L-méthionine (SAM), a récemment été impliquée dans la biosynthèse de nombreux RiPPs. Ces enzymes catalysent un large éventail de réaction, via un mécanisme de chimie radicalaire, aboutissant à une grande variété de modifications post-traductionnelles. Néanmoins, les voies de biosynthèse de nombreux RiPP restent mal comprises.En 2011, il a été montré que Ruminococcus gnavus, un membre important du microbiote humain, produisait un peptide actif contre Clostridium perfringens, la Ruminococcin C (RumC). Le séquençage de l’opéron de biosynthèse de RumC montre la présence de cinq gènes codants des peptides précurseurs (RumC1-5) et deux gènes codant des enzymes (RumMC1 et RumMC2).L’objectif de ma thèse est de mieux comprendre les voies de biosynthèse des produits naturels au sein du microbiome humain. Nous avons démontré l’appartenance des protéines RumMC1 et RumMC2 à la famille des enzymes à radical SAM, ainsi que leurs implications dans la formation de quatre modifications post-traductionnelles (ponts α-thioether) essentielles à l’activité antibiotique de RumC1 et RumC2. Ces études nous ont permis de proposer un mécanisme catalytique pour la maturation de la Rummonicoccin C et ainsi de mieux documenter cette famille d’enzymes émergentes. / The human microbiota consists of thousands bacterial species which synthesize numerous secondary metabolites. However, our knowledge of microbiome-derived natural products is still limited. Among them, RiPPs (Ribosomally synthesized and Post-translationally modified Peptides) are emerging as a major family of natural products possessing diverse structures and biological functions including antibiotic properties, making them a major family of molecules of interest for public health. The biosynthesis of RiPPs occurred by the translation of a precursor peptide, which is then matured via the action of one or more enzymes before the excision of a signal sequence and the export of the active natural product. The structural and functional diversity of RiPPs demonstrates the need for understanding the biosynthetic pathways of these natural products, the systematic study of the modification mechanisms and the characterization of associated maturases. In particular, a family of metallo-enzymes, the S-adenosyl-L-methionine radical (SAM) enzymes, has recently been implicated in the biosynthesis of many RiPPs. These enzymes catalyze a wide range of reactions, via a mechanism of radical chemistry, resulting in a wide variety of post-translational modifications. Nevertheless, the biosynthetic pathways of many RiPPs remain poorly understood.In 2011, it was shown that Ruminococcus gnavus, a major member of the human microbiota, produced an active peptide against Clostridium perfringens, Ruminococcin C (RumC). Sequencing of the RumC biosynthesis operon shows the presence of five genes encoding precursor peptides (RumC1-5) and two genes encoding enzymes (RumMC1 and RumMC2).The aim of my thesis is to understand the biosynthetic pathways of natural products within the human microbiome. We have demonstrated that the RumMC1 and RumMC2 proteins belong to the radial SAM enzyme family, as well as their involvement in the formation of four post-translational modifications (α-thiother bridges) essential for the antibiotic activity of RumC1 and RumC2. These studies allowed us to propose a catalytic mechanism for the maturation of Rummonicoccin and thus to better document this family of emerging enzymes.
3

Les bactériocines RumC, une nouvelle famille de peptides antimicrobiens comme alternative aux antibiotiques conventionnels / RumC peptides, a new family of bacteriocins as viable alternative to conventional antibiotics

Chiumento, Steve 11 October 2019 (has links)
Les antibiotiques sont des médicaments qui ont changé notre manière d’aborder les infections bactériennes et sont devenus l’un des symboles de la médecine moderne. Cependant leur utilisation massive a conduit à l'émergence de souches bactériennes multirésistantes. Ce problème est sans aucun doute un des grands défis que la médecine actuelle doit relever. Sachant que les bactéries évoluent à un rythme plus rapide que la production de nouveaux antibiotiques, il est urgent de trouver des approches alternatives. Il a été mis en évidence que ces mêmes bactéries sont capables de sécréter différents peptides antimicrobiens, ou bactériocines. Ces macromolécules présentent une grande diversité structurale et sont très efficaces pour combattre un grand nombre de souches pathogènes de façon spécifique. Les bactériocines ont un immense potentiel dans les domaines agroalimentaire et pharmaceutique. Notre projet s’intéresse aux bactériocines RumCs produites par une souche dérivée de Ruminococcus gnavus, une bactérie anaérobie stricte, membre dominant du microbiote intestinal humain. Le travail présenté dans ce manuscrit concerne la mise au point d’un système d’expression et de maturation hétérologue chez E. coli de la bactériocine RumC1. La caractérisation biochimique du peptide RumC1 montre que les bactériocines RumCs appartiennent à la famille des sactipeptides pour laquelle l’étape de biosynthèse fait intervenir une enzyme radical-SAM. Les sactipeptides présentent dans leurs séquences peptidiques un ou plusieurs ponts thioéther entre une cystéine et le carbone alpha d’un acide aminé partenaire. RumC1 renferme 4 ponts thioéther ce qui lui confère une structure originale en double épingle à cheveux. L’activité biologique de RumC1 montre que ce peptide est efficace contre un large spectre de bactéries à Gram positif incluant des pathogènes résistants tels que S.aureus et E. faecalis. Dans ces études nous n’avons pas noté de toxicité significative de RumC1 sur différentes lignées cellulaires humaine ni observé de phénomène de résistance. Les travaux en cours visent notamment à définir le mode d’action de RumC1 et à évaluer l’activité biologique de RumC1 dans un contexte d’infection in vivo chez la souris. / Antibiotics are drugs that have changed the way we approach bacterial infections and have become one of the symbols of modern medicine. However, their widespread use has led to the emergence of multiresistant bacterial strains. This problem is undoubtedly one of the major challenges facing today's medicine. Knowing that bacteria evolve at a faster rate than the discovery of new antibiotics, it is urgent to find alternative approaches. It has been shown that these same bacteria are capable of secreting antimicrobial peptides, the bacteriocins. These macromolecules have a high structural diversity and are very effective in combating a large number of pathogenic strains in a specific way. Bacteriocins have immense potential in the agro-food and pharmaceutical sectors. Our project focuses on the bacteriocins RumCs produced by a strain derived from Ruminococcus gnavus, a strict anaerobic bacterium of the human intestinal microbiota. The work presented in this manuscript concerns the development of a heterologous expression and maturation system in E. coli of the bacteriocin RumC1. The biochemical characterization of the RumC1 peptide shows that the RumCs bacteriocins belong to the family of sactipeptides for which the biosynthesis step involves a radical-SAM enzyme. The sactipeptides have in their peptide sequences one or more thioether bridges between a cysteine and the alpha carbon of a partner amino acid. RumC1 contains 4 thioether bridges which gives it an original structure in double hairpin. The biological activity of RumC1 shows that this peptide is effective against a broad spectrum of Gram-positive bacteria including resistant pathogens such as S.aureus and E. faecalis. In these studies, we did not note any significant toxicity of RumC1 on different human cell lines nor observed resistance phenomena. Current work aims to define the mode of action of RumC1 and to evaluate the biological activity of RumC1 in an in vivo context of infection in mice.

Page generated in 0.0312 seconds