• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 603
  • 265
  • 70
  • 37
  • 36
  • 12
  • 12
  • 10
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1210
  • 242
  • 237
  • 224
  • 184
  • 135
  • 118
  • 107
  • 94
  • 90
  • 87
  • 86
  • 83
  • 74
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Inducing and Characterizing Structural Changes in RuO2•xH2O

Cormier, Zachary R. 04 August 2011 (has links)
RuO2/carbon composites have attracted a lot of attention for use as supercapacitor electrodes due to their high power and energy capabilities. Methods for loading the RuO2 into the carbon include impregnation and electrochemical deposition. The first project involves impregnation of RuO2 nanoparticles into a mesoporous carbon powder. Structural changes of the RuO2 nanoparticles in the composite were induced by annealing at high temperatures, and X-ray diffraction (XRD) and X-ray absorption (XAS) were used to study the changes. In situ electrochemical-XAS experiments were also developed and performed to study the structural stability of the RuO2 nanoparticles in the composite as well as bulk RuO2•xH2O, with respect to changing potential. Preliminary work on the electrodeposition of RuO2•xH2O onto Au foil and carbon cloth was performed. An electrode with a high specific capacitance of the RuO2•xH2O component was achieved. However, further studies need to be performed to optimize the deposition solution.
272

RUTHENIUM-CATALYZED CYCLOADDITIONS BETWEEN ALKYNYL PHOSPHONATES AND BICYCLIC ALKENES

Cockburn, Neil 02 September 2009 (has links)
Ruthenium-catalyzed cycloadditions of bicyclic alkenes with alkynyl phosphonates were investigated. In regard to the Ru-catalyzed [2+2] cycloadditions, the phosphonate moieties were found to be compatible, giving the corresponding cyclobutene cycloadducts in low to excellent yield (up to 96%). Alkynyl phosphonates showed lower reactivity than other heteroatom-substituted alkynes such as alkynyl halides, ynamides, alkynyl sulfides and alkynyl sulfones, and required a higher reaction temperature and much longer reaction time. To this end microwave heating was employed to expedite the reaction. While yields comparable to the conventionaly heated cycloadditions were not achieved, the reaction was much faster by microwave heating. In direct comparison over a 2 h period, yields were much greater in the microwave heated reactions. Computational studies determined that the electronic nature of the triple bond is sufficiently different in alkynyl phosphonates compared to other substituents. While investigating solvents of varying polarity in the microwave assisted [2+2] cycloaddition a new mode of reaction, previously unknown to this catalyst, was discovered. At elevated temperatures, in polar solvents, norbornadiene undergoes a Ru-catalyzed [2+2+2] homo Diels-Alder cycloaddition with alkynyl phophonates. This reaction was optimized to produce excellent yields with the model alkynyl phosphonate studied. Investigation of other alkynes revealed that the scope of this reaction may be limited to phosphonate substituted alkynes.
273

Oxidation of 2-propanol in alkaline electrolytes using platinum and ruthenium-based catalysts: prototype fuel cells and electrokinetics studies

Markiewicz, Matthew Eugene Paul Unknown Date
No description available.
274

New Materials for Gas Sensitive Field-Effect Device Studies

Salomonsson, Anette January 2005 (has links)
Gas sensor control is potentially one of the most important techniques of tomorrow for the environment. All over the world cars are preferred for transportation, and accordingly the number of cars increases, unfortunately, together with pollutants. Boilers and powerplants are other sources of pollutants to the environment. Metal-Insulator-Silicon Carbide (MISiC) Field-effect sensors in car applications and boilers have the potential to reduce the amount of pollutants. These devices are sensitive to several gases in exhaust and flues gases, such as hydrogen, hydrocarbons, and ammonia (for the selective catalytic reduction (SCR) application). These applications require specific and long term stable sensors. The car industry for instance wants sensors that will stand at least 240 000 km. This thesis presents studies of the active layers in MIS Fieldeffect gas sensors. Fundamental studies of the sensor mechanism has been performed in ultra high vacuum, UHV, to understand the gas response mechanism in more detail, and to find out how the sensing mechanism is affected by the catalytic active gate material. The influence of four different insulating layers was studied at atmospheric pressure. The catalytic layer has also been altered to metal oxide nanoparticles with or without impregnation of catalytic metals. Nanoparticles are potential candidates to be used as the gate material for high temperature, long-term stable FET sensor devices. The combination of catalytic metals and metal oxides may prevent reconstruction of the metal. The use of nanoparticles will increase the number of triple points (catalytic material and insulator in contact with gas), which are crucial e.g. for the ammonia sensitivity. Another challenging aspect of nanoparticles is the possibility to get selectivity to different gases based on the particle size. The goal is to find new sensitive, selective and more long term stable materials, which meet the requirements above. From the UHV studies we learned that the two catalytic active metals Pt and Pd, do behave in a similar way, although there are some quantitative differences. Values for the heat of adsorption on both the Pd and Pt surfaces are estimated as well as the dipole moments for the adsorbates on the insulator surface. The insulators play an important role in the sensing mechanism, since the adsorption of hydrogen atoms (or protons) that are detected by the sensor occur on the insulator surface. By changing the insulator material the saturation response of the sensors is affected. It was shown that Al2O3 gave a higher saturated response to hydrogen in Pt-MIS capacitors at 140°C as compared to Ta2O5, SiO2, and Si3N4. We have tested wet synthesized ruthenium dioxide and ruthenium nanoparticles, which are electrically conducting and catalytically active sensing material. RuO2 is especially interesting as a high temperature material since it is already oxidized. Both materials show a sensitivity pattern comparable to porous platinum. The temperature dependence of the gas response indicates a higher catalytic activity of the RuO2 as compared to Ru nanoparticles. Nanoparticles synthesized by aerosol technology provide several advantages like a good adhesion of the particles to the substrate, many possible material combinations and efficient methods for particle separation according to size. The methods to use this technology for sensing materials in MISiC sensors are now under development and some preliminary results are obtained. / On the day of the public defence of the doctoral thesis, the status of articles I and II was: accepted for publication.
275

Phosphorus-containing ruthenacycles: exploring their potential in processes relevant to hydrophosphination.

Morrow, Krista Maria Elena 17 April 2012 (has links)
Phosphorus-containing metallacycles formed from the [2+2] cycloaddition of unsaturated substrates at the Ru-P π-bond of [Ru(η5-indenyl)(PCy2)(PPh3)] (2) were examined as possible intermediates relevant to hydrophosphination. Reagents, intermediates, products, and by-products involved in the [2+2] cycloaddition were identified and analyzed for reactivity and stability. The products, metallacycles of the form [Ru(η5-indenyl)(κ2-RCHCH2PCy2)(PPh3)] (4), were found to undergo facile cycloreversion. An ethylene η2-coordination adduct was directly observed by low temperature 31P{1H} NMR as an intermediate in the [2+2] cycloaddition mechanism. Steric and electronic effects of alkene substituents on metallacycle formation and selectivity were investigated in detail through rate constant and activation parameter determination, as well as collaborative computational DFT analyses and the construction of a Hammett plot. Preliminary attempts at releasing phosphinated products from ruthenacycle complexes via protonolysis and phosphine substitution were conducted. An unexpected metallacyclic product of one of these attempts, [Ru(η5-indenyl)(κ2-CHCHPCy2)(PPh3)] (10), was identified and characterized. / Graduate
276

Metathesis Catalysts in Tandem Catalysis: Methods and Mechanisms for Transformation

Beach, Nicholas James 18 April 2012 (has links)
The ever-worsening environmental crisis has stimulated development of less wasteful “green” technologies. To this end, tandem catalysis enables multiple catalytic cycles to be performed within a single reaction vessel, thereby eliminating intermediate processing steps and reducing solvent waste. Assisted tandem catalysis employs suitable chemical triggers to transform the initial catalyst into new species, thereby providing a mechanism for “switching on” secondary catalytic activity. This thesis demonstrates the importance of highly productive secondary catalysts through a comparative hydrogenation study involving prominent hydrogenation catalysts of tandem ring-opening metathesis polymerization (ROMP)-hydrogenation, of which hydridocarbonyl species were proved superior. This thesis illuminates optimal routes to hydridocarbonyls under conditions relevant to our ROMP-hydrogenation protocol, using Grubbs benzylidenes as isolable proxies for ROMP-propagating alkylidene species. Analogous studies of ruthenium methylidenes and ethoxylidenes illuminate optimal routes to hydridocarbonyls following ring-closing metathesis (RCM) and metathesis quenching, respectively. The formation of unexpected side products using aggressive chemical triggers is also discussed, and emphasizes the need for cautious design of the post-metathesis trigger phase.
277

Ruthenium Complexes with N/C-donor Ligands: Redox Catalysts for Water Oxidation and the Epoxidation of Alkenes

Aguiló Carreras, Joan 12 March 2013 (has links)
Un dels reptes més ambiciosos que té avui en dia la comunitat científica és millorar el coneixement de la reacció d’oxidació de l’aigua que dóna lloc a oxigen, protons i electrons. D’altra banda els epòxids son intermedis de reaccions diverses en la indústria química, particularment per a la síntesi de diversos polímers i “fine chemicals” com ara productes farmacèutics, additius alimentaris o fragàncies. Els aquo complexes mononuclears i dinuclears de ruteni amb lligands polipiridílics han estat estudiats a fons pel nostre grup de recerca i d’altres, convertint-se en catalitzadors útils per a l’oxidació d’aigua i per a l’epoxidació d’alquens. Aquesta tesi vol presentar i discutir els següents temes relacionat: 1. La immobilització de dos nous complexes moleculars del tipus “Ru-Hbpp” capaços d’oxidar aigua, sobre òxids metàl·lics com són el TiO2 i el SiO2 així com fent ús del polímer Nafion per tal d’assolir l’objectiu final de construir una cel·la foto-electroquímica. El comportament catalític d’aquests nous sistemes serà discutit i comparat tant amb les espècies homòlogues moleculars com amb d’altres sistemes similars. 2. La síntesi i caracterització d’un complex dinuclear de ruteni que conté un lligand pont amb disposició bis-facial. La seva reactivitat envers l’oxidació d’aigua i d’olefines i la discussió comparant amb sistemes ja descrits a la literatura també formen part d’aquesta secció. 3. En aquest capítol s’ha plantejat la síntesi d’una nova família de lligands híbrids tetradentats capaços de coordinar el ruteni tant per N com per C, camp en el que se n’han fet diversos avanços. Així mateix descrivim un nou complex dinuclear de ruteni contenint un d’aquests nous lligands. 4. La preparació i caracterització tant espectroscòpica com electroquímica d’una família de complexos que tenen com a fórmula general [RuII(PY4Im)(X)]n+ (X = Cl, n = 1 or X = H2O, n = 2), on PY4Im és el lligand pentadentat 1,3-bis(bis(2-piridil)metil)imidazol-2-ilidè. En aquest apartat també es descriurà l’estudi catalític d’aquestes noves espècies envers l’oxidació d’aigua i alquens. / The understanding of the water oxidation reaction to molecular oxygen is still one of the great challenges faced by scientific community. On the other hand the epoxidation of olefins is a reaction of high relevance in both industry and academia. Epoxides are important intermediates in the chemical industry, particularly for the synthesis of various polymers and fine chemicals, such as pharmaceuticals, food additives, or flavor and fragrance compounds. Mononuclear and dinuclear Ru aqua complexes containing polypyridylic ligans have been recently studied by ourselves and by other groups, and have become a very useful platform for both water oxidation catalysis and the epoxidation of alkenes. In this thesis we present and discuss the following related topics: 1. Immobilization of two new “Ru-Hbpp” molecular water oxidation catalysts onto metal oxides such as TiO2, SiO2 as well as into Nafion in order to succed in the building up of a photo-electrochemical cell. The catalytic performance of these new water oxidation materials will be discussed and compared with their homogeneous counterparts and other related systems previously reported. 2. Synthesis and characterization of a novel diruthenium complex containing the bis-facial hexadentate bridging ligandg Hbimp. Its reactivity towards the oxidation of water and olefins and the comparative discussion with the already reported family of related dinuclear complexes. 3. The synthesis of a new family of tetradentate bridging phthalazine-triazole ligands capable to coordinate a metal centre via both N and C atoms is planned and attempted. The synthesis and characterization of a new dinuclear Ru complex containing one of these ligands is here reported and further discussed. 4. The synthesis and the spectroscopical and electrochemical characterization of a new family of complexes with general formula [RuII(PY4Im)(X)]n+ (X = Cl, n = 1 or X = H2O, n = 2), where PY4Im is the pentadentate 1,3-bis(bis(2-pyridyl)methyl)imidazol-2-ylidene ligand. These results together with the performance of the new species towards the oxidation of water and alkenes will be thoroughly discussed.
278

Controlled synthetic approach to di- and trinuclear ruthenium acetylide complexes

Shearer, Timothy Kenneth, Chemistry, Faculty of Science, UNSW January 2009 (has links)
This thesis describes the synthesis and characterisation of a variety of acetylide-bridged di- and trinuclear ruthenium acetylide complexes that were prepared in a controlled fashion, and the preparation and characterisation of the ruthenium(II) complexes required for these stepwise reactions. These precursor complexes, or building blocks, include dimethyl-, acetylidomethyl-, and bis(acetylido)ruthenium(II) complexes. An introduction to metal acetylide chemistry is presented in Chapter 1. The previous research in this area is briefly reviewed, and the potential applications of these complexes are highlighted. The primary aims of this course of work are outlined, namely, to develop a controlled synthetic approach to the synthesis of oligonuclear ruthenium acetylide complexes. The synthetic strategies for this aim are introduced in Chapter 2, and the synthetic routes to cis and trans-Ru(CH3)2(dmpe)2 (25/23) and cis and trans-Ru(CH3)2(depe)2 (26/24) are described. Characterisation of the novel, synthetically important trans-Ru(CH3)2(dmpe)2 (23) is completed by an examination of its X-Ray crystallographic structure. Chapter 3 describes the thermal and photochemical metathesis reactions of trans-Ru(CH3)2(dmpe)2 (23) with terminal acetylenes, and the preparation of a variety of acetylidomethylruthenium(II) complexes, trans-Ru(CH3)(C≡CR)(dmpe)2 (R = Ph (30), tBu (31), SiMe3 (32), C6H4-4-tBu (33), C6H3-3,5-tBu2 (34), C6H4-4-C≡CH (35), C6H4-4-OCH3 (36), C6H4-4-CH3 (37), C6H3-3,5-(CF3)2 (38)). The characterisation of these complexes by NMR spectroscopy, IR spectroscopy and X-Ray crystallography is presented. A clean and high yielding synthesis of the synthetically significant unsymmetrical bis(acetylido)ruthenium(II) complexes was developed via the reaction of an acetylidomethylruthenium(II) complex with an excess of a second terminal alkyne in a mixture of methanol and benzene. The characterisation of the novel complexes trans-Ru(C≡CR)(C≡CR′)(dmpe)2 (R = Ph, R′ = tBu (40), SiMe3 (41), C6H4-4-C≡CH (44); R = tBu, R′ = SiMe3 (42), C6H4-4-C≡CH (43), C6H4-4-tBu (45), C6H3-3,5-tBu2 (46)) by NMR and IR spectroscopy, mass spectrometry and X-Ray crystallography is described in Chapter 4. Additionally, Chapter 4 describes the synthesis and characterisation of symmetrical bis(acetylido)ruthenium(II) complexes, and a number of organic butenyne compounds, which were observed as by-products from the attempted synthesis of several of the bis(acetylido)ruthenium(II) complexes. Dinuclear ruthenium(II) complexes were prepared by the reaction of trans-Ru(C≡CR)(C≡CC6H4-4-C≡CH)(dmpe)2 (R = tBu (43) or Ph (44)) with an acetylidomethylruthenium(II) complex in toluene and methanol. Both symmetrical and unsymmetical dinuclear complexes could be prepared in this way, and were characterised by a range of techniques including NMR spectroscopy, IR spectroscopy, mass spectrometry and X-Ray crystallography, and are described in Chapter 5. In addition, an electrochemical study of one of the dinuclear complexes was undertaken using cyclic voltammetry. The symmetrical trinuclear ruthenium(II) complexes, trans,trans,trans- (RC≡C)Ru(dmpe)2(μ-C≡CC6H4C≡C)Ru(depe)2(μ-C≡CC6H4C≡C)Ru(dmpe)2(C≡CR) (R = Ph (80), tBu (81), SiMe3 (82)) was prepared by the reaction of two equivalents of an acetylidomethylruthenium(II) complex with the symmetrical bis(acetylido)ruthenium(II) complex, trans-Ru(C≡CC6H4-4-C≡CH)2(depe)2 (54), in toluene and methanol. These syntheses, and the subsequent characterisation of the products are also reported in Chapter 5. The primary aim of this thesis, viz. the synthesis and characterisation of acetylide bridged di- and trinuclear ruthenium acetylide complexes in a controlled fashion, was successfully achieved. Suggestions for future work are described in Chapter 6.
279

Controlled synthetic approach to di- and trinuclear ruthenium acetylide complexes

Shearer, Timothy Kenneth, Chemistry, Faculty of Science, UNSW January 2009 (has links)
This thesis describes the synthesis and characterisation of a variety of acetylide-bridged di- and trinuclear ruthenium acetylide complexes that were prepared in a controlled fashion, and the preparation and characterisation of the ruthenium(II) complexes required for these stepwise reactions. These precursor complexes, or building blocks, include dimethyl-, acetylidomethyl-, and bis(acetylido)ruthenium(II) complexes. An introduction to metal acetylide chemistry is presented in Chapter 1. The previous research in this area is briefly reviewed, and the potential applications of these complexes are highlighted. The primary aims of this course of work are outlined, namely, to develop a controlled synthetic approach to the synthesis of oligonuclear ruthenium acetylide complexes. The synthetic strategies for this aim are introduced in Chapter 2, and the synthetic routes to cis and trans-Ru(CH3)2(dmpe)2 (25/23) and cis and trans-Ru(CH3)2(depe)2 (26/24) are described. Characterisation of the novel, synthetically important trans-Ru(CH3)2(dmpe)2 (23) is completed by an examination of its X-Ray crystallographic structure. Chapter 3 describes the thermal and photochemical metathesis reactions of trans-Ru(CH3)2(dmpe)2 (23) with terminal acetylenes, and the preparation of a variety of acetylidomethylruthenium(II) complexes, trans-Ru(CH3)(C≡CR)(dmpe)2 (R = Ph (30), tBu (31), SiMe3 (32), C6H4-4-tBu (33), C6H3-3,5-tBu2 (34), C6H4-4-C≡CH (35), C6H4-4-OCH3 (36), C6H4-4-CH3 (37), C6H3-3,5-(CF3)2 (38)). The characterisation of these complexes by NMR spectroscopy, IR spectroscopy and X-Ray crystallography is presented. A clean and high yielding synthesis of the synthetically significant unsymmetrical bis(acetylido)ruthenium(II) complexes was developed via the reaction of an acetylidomethylruthenium(II) complex with an excess of a second terminal alkyne in a mixture of methanol and benzene. The characterisation of the novel complexes trans-Ru(C≡CR)(C≡CR′)(dmpe)2 (R = Ph, R′ = tBu (40), SiMe3 (41), C6H4-4-C≡CH (44); R = tBu, R′ = SiMe3 (42), C6H4-4-C≡CH (43), C6H4-4-tBu (45), C6H3-3,5-tBu2 (46)) by NMR and IR spectroscopy, mass spectrometry and X-Ray crystallography is described in Chapter 4. Additionally, Chapter 4 describes the synthesis and characterisation of symmetrical bis(acetylido)ruthenium(II) complexes, and a number of organic butenyne compounds, which were observed as by-products from the attempted synthesis of several of the bis(acetylido)ruthenium(II) complexes. Dinuclear ruthenium(II) complexes were prepared by the reaction of trans-Ru(C≡CR)(C≡CC6H4-4-C≡CH)(dmpe)2 (R = tBu (43) or Ph (44)) with an acetylidomethylruthenium(II) complex in toluene and methanol. Both symmetrical and unsymmetical dinuclear complexes could be prepared in this way, and were characterised by a range of techniques including NMR spectroscopy, IR spectroscopy, mass spectrometry and X-Ray crystallography, and are described in Chapter 5. In addition, an electrochemical study of one of the dinuclear complexes was undertaken using cyclic voltammetry. The symmetrical trinuclear ruthenium(II) complexes, trans,trans,trans- (RC≡C)Ru(dmpe)2(μ-C≡CC6H4C≡C)Ru(depe)2(μ-C≡CC6H4C≡C)Ru(dmpe)2(C≡CR) (R = Ph (80), tBu (81), SiMe3 (82)) was prepared by the reaction of two equivalents of an acetylidomethylruthenium(II) complex with the symmetrical bis(acetylido)ruthenium(II) complex, trans-Ru(C≡CC6H4-4-C≡CH)2(depe)2 (54), in toluene and methanol. These syntheses, and the subsequent characterisation of the products are also reported in Chapter 5. The primary aim of this thesis, viz. the synthesis and characterisation of acetylide bridged di- and trinuclear ruthenium acetylide complexes in a controlled fashion, was successfully achieved. Suggestions for future work are described in Chapter 6.
280

Chloride abstraction from ruthenium alkyl bis-diphosphine dichlorides

Tronoff, Ashley January 2008 (has links)
Doctor of Philisophy (PhD) / Despite their early discovery, relatively few classes of ruthenium dinitrogen complexes are known. This work describes the successful coordination of dinitrogen to the electron-rich alkylphosphine cores [RuCl(dmpe)2]+ and [RuCl(depe)2]+ by chloride abstraction from both the cis and trans dichloro derivatives. One such complex, trans-[RuCl(N2)(dmpe)2](BArF24), possesses the most activated ruthenium νNN reported to date. A variety of chloride abstraction agents were tested on the cis and trans isomers of [RuCl2(P-P)2] (P-P = dmpe, depe) with the choice of abstracting agent, anion and solvent all found to significantly affect the outcome. Reaction with silver triflate and trimethylsilyl triflate was found to give dichlororuthenium(III) products, which could be readily reduced to the ruthenium(II) starting materials with common reducing agents, as well as by alcohols and hydrazine. The use of thallium triflate avoided oxidation and led to the formation of the crystallographically characterised polymeric incorporation product, [{trans-[RuCl2(dmpe)2]•Tl(OTf)}n] from trans-[RuCl2(dmpe)2] and the interesting chloride-bridged ruthenium dimer cis-[{Ru(depe)2}2(μ-Cl)2](OTf)2 from trans-[RuCl2(depe)2]. Anion exchange of the complex [{trans-[RuCl2(dmpe)2]•Tl(OTf)}n] with the non-coordinating anion tetrakis(3,5-bis(trifluoromethyl)phenyl)borate resulted in removal of thallium from the system and coordination of dinitrogen to give trans-[RuCl(N2)(dmpe)2](BArF24). Cis-[{Ru(depe)2}2(μ-Cl)2](OTf)2 was found to readily react with a variety of small ligands and gave products such as cis-[RuCl(CO)(depe)2](OTf), cis-[RuCl(NCMe)(depe)2](OTf), cis-[RuCl(CNtBu)(depe)2](OTf), cis-[RuCl(NH3)(depe)2](OTf), cis-[RuCl(N3)(depe)2], and trans-[RuCl(η2-H2)(depe)2](OTf). A preliminary X-ray single crystal structure analysis was conducted on the complex cis-[RuCl(CNtBu)(depe)2](OTf). The thallium(I) salt Tl(BArF24) was found to be an efficient chloride abstraction agent under mild conditions. Reactions with cis- and trans-[RuCl2(depe)2] and cis-[RuCl2(dmpe)2] furnished dinitrogen complexes of the form cis-[{RuCl(P-P)2}2(μ-N2)](BArF24)2, whilst reaction of trans-[RuCl2(dmpe)2] with Tl(BArF24) led to the stable five-coordinate complex trans-[RuCl(dmpe)2](BArF24). Vapour diffusion techniques applied to a solution of cis-[{RuCl(depe)2}2(μ-N2)](BArF24)2 gave rise to crystals of trans-[RuCl(N2)(depe)2](BArF24), on which preliminary X-ray molecular structure analysis was performed. Reactions of both cis-[{Ru(depe)2}2(μ-Cl)2](OTf)2 and trans-[RuCl2(dmpe)2] with high pressure (140 psi) dinitrogen at 140 150°C in methanol or tetrahydrofuran resulted in solvent carbonyl abstraction to afford trans-[RuCl(CO)(depe)2](OTf) and trans-[RuCl(CO)(dmpe)2](Cl) from the depe and dmpe complexes respectively. The molecular structure of trans-[RuCl(CO)(dmpe)2](Cl) was determined via single crystal X-ray structure analysis.

Page generated in 0.3831 seconds