• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 603
  • 265
  • 70
  • 37
  • 36
  • 12
  • 12
  • 10
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1209
  • 242
  • 237
  • 224
  • 184
  • 134
  • 118
  • 107
  • 94
  • 90
  • 87
  • 86
  • 82
  • 74
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Copper-Catalyzed Borylation of Hemiaminal Ethers and Ruthenium-Catalyzed Tandem Reactions of Nitrogen-Tethered Dienes

Xiao, Lu January 2016 (has links)
Thesis advisor: Marc L. Snapper / Chapter 1 Bisphosphine monoxides have unique coordinating capabilities with transition metals. Several research groups have independently reported transition metal-catalyzed highly stereoselective reactions by using chiral bisphosphine monoxides as the ligands. A review of recent works in this field is provided in this chapter to showcase the features of this class of ligand. Chapter 2 We have developed a copper-catalyzed borylation method to synthesize α-aminoboronic esters, which are biologically interesting molecules in enzyme inhibitions. Employment of hemiaminal ethers as substrates to in situ generate the corresponding aldimines obviated purification of the unstable aldimines and potential imine-enamine tautomerization. By using a chiral bisphosphine monoxide ligand in our copper-catalyzed borylation conditions, we successfully synthesized a variety of enantioenriched alkyl-substituted α-aminoboronic esters in good yields and with good enantioselectivity. Chapter 3 A ruthenium-catalyzed three-step tandem sequence was established to prepare nitrogen-protected 2,3-dihydroxypyrrolidines and 2,3-dihydroxypiperidines. This tandem sequence includes ring-closing metathesis, olefin isomerization and olefin dihydroxylation, and utilizes the second-generation Grubbs’ catalyst as the initial ruthenium precatalyst. Readily accessible nitrogen-tethered dienes were used as the substrates to prepare the heterocyclic compounds in an efficient fashion. Through optimization, we discovered the optimal conditions for ruthenium-catalyzed dihydroxylation of ene-carbamates and ene-sulfonamides, which were the challenging substrates in the previous methods. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
232

Tandem Reactions of Dienes Generated by Enyne Metathesis

Gavenonis, Jason January 2010 (has links)
Thesis advisor: Marc L. Snapper / A catalyst of notoriety Decomposes with great variety. Transformations after metathesis Facilitate tandem catalysis. This reaction has a proclivity For new regioselectivity With methanolic modification: Tandem enyne hydrovinylation. From a diene protonation event, Unexpected reaction with solvent, During catalyst optimization: One-pot enyne hydroarylation. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
233

Complexos de rutênio(II) coordenados a carbenos N-heterocícilicos como pré-catalisadores para mediar reações de ROMP de norborneno e ATRP de metacrilato de metila /

Idehara, André Hideki Silva. January 2017 (has links)
Orientador: Valdemiro Pereira de Carvalho Júnior / Banca: André Luiz Bogado / Banca: Ana Maria Pires / Resumo: A investigação de sistemas catalíticos duais capazes de mediar as reações de polimerização por abertura de anel via metátese (ROMP) e de polimerização radicalar por transferência de átomo (ATRP) simultaneamente é de grande interesse e importância na obtenção de novos materiais com potencial de aplicação. Neste estudo, novos complexos de Rutênio(II) coordenados a diferentes carbenos N-heterocíclicos derivados de cicloalquilaminas (ciclopentil (IPent) (1a), ciclohexil (IHex) (1b), cicloheptil (IHept) (1c) e ciclooctil (IOct) (1d)) foram sintetizados: [RuCl2(S-dmso)2(IPent)] (2a), [RuCl2(S-dmso)2(IHex)] (2b), [RuCl2(S-dmso)2(IHept)] (2c) e [RuCl2(S-dmso)2(IOct)] (2d). Os sais imidazólicos e seus respectivos complexos de rutênio foram caracterizados por FTIR, UV-Vis, RMN e voltametria cíclica, comprovando-se o sucesso na síntese dos mesmos. Os complexos planejados foram avaliados como precursores catalíticos em reações de ROMP de norborneno (NBE) e em reações de ATRP de metacrilato de metila (MMA). As sínteses de polinorborneno (poliNBE) via ROMP com os complexos 2a-d como pré-catalisadores foram avaliadas sob condições de reação ([EDA]/[Ru] = 28 (5 µL), [NBE]/[Ru] = 5000, temperatura de 50 ºC, utilizando clorofórmio como solvente, variando o tempo até 60 minutos. A polimerização de MMA via ATRP foi conduzida usando os complexos 2a-d na presença de etil-α-bromoisobutirato (EBiB) como iniciador. Os testes catalíticos foram avaliados em função do tempo de reação usando a razão... / Abstract: The investigation of dual catalytic systems able to mediate simultaneously ring-opening metathesis polymerization (ROMP) and atom-transfer radical polymerization (ATRP) reactions is of great interest and importance in obtaining new materials with potential for application. In the study, new complexes of Ruthenium (II) coordinated to different N-heterocyclic carbenes derived from cycloalkylamines (cyclopentyl (IPent) (1a), cyclohexyl (IHex) (1b), cycloheptyl (IHept) (1c) and cyclooctyl (IOct) (1d), [RuCl2(S-dmso)2(IHept)] (2a), [RuCl2(S-dmso)2(IHex)] (2b) [RuCl2(S-dmso)2(IHept)] (2c) and [RuCl2(S-dmso)2(IOct)] (2d). The imidazole salts and their respective ruthenium complexes were characterized by FTIR, UV-Vis, NMR and cyclic voltammetry, proving the success in their synthesis. The planned complexes were evaluated as catalytic precursors in norbornene ROMP (NBE) reactions and in methyl methacrylate (MMA) ATRP reactions. The polynorbornene (polyNBE) syntheses via ROMP with complexes 2a-d as pre-catalysts were evaluated under reaction conditions ([EDA] / [Ru] = 28 (5 μL), [NBE] / [Ru] = 5000, The polymerization of MMA via ATRP was conducted using the complexes 2a-d in the presence of ethyl α-bromoisobutyrate (EBiB) as the initiator.The catalytic tests were evaluated As a function of the reaction time using the molar ratio [MMA] / [EBiB] / [Ru] = 1000/2/1. All ATRP experiments were conducted at 85 °C. The linear correlation of ln ([MMA]0 / [MMA]) as a function of time in MMA ATRP... / Mestre
234

Influência dos ligantes ancilares na reatividade de complexos de rutênio como iniciadores para ROMP / Influence of ancillary ligands in the reactivity of ruthenium complexes as initiators for ROMP

Camila Palombo Ferraz 04 April 2014 (has links)
Um novo iniciador para metátese do tipo GH nitro-substituído [Ru(1-CH3-4-CO2-Py+)2(IMesH2)(=CH-2-(2-PrO)-5-NO2-C6H3)][OTf-]2 (3b) foi preparado. Os comprimentos de ligação e deslocamentos químicos foram comparáveis aos do iniciador 3a ([Ru(1-CH3-4-CO2-Py+)2(IMesH2)(=CH-2-(2-PrO)-C6H3)][OTf-]2), embora o substituinte NO2 na porção benzilideno resulte numa ligação Ru-O mais curta. A comparação entre os iniciadores do tipo GH e 5-NO2-GH indica que a substituição dos cloretos por pseudo-haletos resulta em maior polarização da ligação Ru=C e uma ligação Ru-O mais forte. O iniciador 3b e os iniciadores análogos do tipo GH [Ru(1-CH3-4-CO2-Py+)2(IMesH2)(=CH-2-(2-PrO)-C6H4)][OTf-]2 (3a) e [RuCl(1-CH3-4-CO2-Py+)(IMesH2)(=CH-2-(2-PrO)-C6H4)][OTf-] (5a) foram usados para reações de ROMP em meio homogêneo e em meio bifásico líquido/líquido usando o líquido iônico [BDMIM+][BF4-] e tolueno. Os catalisadores foram ativos para a ROMP de monômeros a base de norborneno (NBE), cis-cicloocteno (COE) e diciclopentadieno (DCPD) em meio homogêneo com bons rendimentos. O catalisador mono-iônico 5a foi mais ativo que os catalisadores 3a e 3b. As reações de ROMP em meio bifásico permitiram a síntese de polímeros com baixos valores de IPD (1,2-2,4) e altos rendimentos. O uso de um agente de transferência de cadeia (ATC) gerou polímeros com baixo teor de metal (entre 10 e 80 ppm), o que corresponde a uma remoção de 98-99,4% do Ru inicial. Em adição, o uso do ATC permitiu a realização de experimentos de reciclagem em meio bifásico para a ROMP de NBE, onde 3a e 5a foram ativos por vários ciclos. Apesar de menos ativo, 3a foi mais estável, por manter a atividade por maior número de ciclos. Foi observada baixa contaminação de Ru nos polímeros após cada ciclo (8-75 ppm), o que representa uma remoção de 98-99,9%. <br /> Como uma segunda parte do trabalho, os novos complexos [RuCl2(PPh3)2(4-CH2R-pip)], com R = H (1), Ph (2) e OH (3), foram sintetizados e aplicados como iniciadores para a ROMP de norborneno (NBE) e norbornadieno (NBD) sob diferentes tempos de reação, temperaturas e concentrações de monômero. Houve uma clara diferença nos rendimentos de homopolímero na ordem 1 > 2 > 3 na razão molar [monômero]/[Ru] = 5000 a 25 &deg;C de 5-60 min. A diferença nos rendimentos tende a desaparecer a 50 &deg;C, com rendimentos quantitativos para 15-30 min usando qualquer iniciador. Os resultados dos copolímeros obtidos a TA por 60 min a partir de soluções contendo quantidades fixas de NBE e quatro quantidades diferentes de NBD sugerem que o tipo de iniciador também afeta as reações, com maior inserção de NBD com 1. A ocorrência de ligações cruzadas aumentou com o aumento da carga de NBD, evidenciado pelo decréscimo nos valores de Mc e aumento valores de Tg. <br /> Em outra parte do doutorado, o novo complexo de RuIII [RuCl3(PCy3)2] foi sintetizado e caracterizado, se mostrando estável ao ar. O complexo foi aplicado como iniciador para ROMP em ar e apresentou significante diferença na reatividade para norborneno (NBE) e norbornadieno (NBD). Rendimentos quantitativos de poliNBD foram obtidos instantaneamente a 25 &deg;C, enquanto 40 % de poliNBE foi produzido em 5 min a 25 &deg;C e 95% em 60 min a 50 &deg;C. A copolimerização de NBE e NBD com diferentes razões molares iniciais [NBD]/[Ru] a 25 &deg;C resultaram em materiais com uma grande quantidade de NBD. Os valores de Tg mudaram de 37 (poliNBE) para 90 &deg;C (poli[NBE-co-NBD]) com o aumento da carga de NBD. A caracterização morfológica mostrou que os copolímeros apresentam uma tendência a serem mais organizados com a diminuição da carga de NBD, com um padrão bem definido do tipo favo de mel para a amostra contendo a menor quantidade de NBD. / A novel Grubbs-Hoveyda (GH) nitro-substituted ionic metathesis initiator [Ru(1-CH3-4-CO2-Py+)2(IMesH2)(=CH-2-(2-PrO)-5-NO2-C6H3)][OTf-]2 (3b) has been prepared. Bond lengths and chemical shifts were comparable to 3a ([Ru(1-CH3-4-CO2-Py+)2(IMesH2)(=CH-2-(2-PrO)-C6H3)][OTf-]2), although the NO2 substituent in the benzilidene moiety affords shorter Ru-O bond. Comparison between GH and 5-NO2-GH initiators indicates that the replacement of chlorides by pseudo-halides result in higher polarization of Ru=C bond and stronger Ru-O bond. 3b and the parent GH initiators [Ru(1-CH3-4-CO2-Py+)2(IMesH2)(=CH-2-(2-PrO)-C6H4)][OTf-]2 (3a) and [RuCl(1-CH3-4-CO2-Py+)(IMesH2)(=CH-2-(2-PrO)-C6H4)][OTf-] (5a) were used for ROMP reactions under homogeneous and biphasic liquid/liquid conditions using the ionic liquid [BDMIM+][BF4-] and toluene. The catalysts were active for ROMP of norbornene(NBE)-based monomers, cis-cicloocteno (COE) and dicyclopentadiene (DCPD) under homogeneous conditions providing good yields. The monoionic catalyst 5a was more active than the dicationic 3a and 3b. ROMP under biphasic conditions allowed for preparing polymers with lower PDIs (1.2-2.4) and higher yields. The use of a chain transfer agent (CTA) allowed for polymers with low metal content (range between 10 and 80 ppm), which corresponds to a Ru-removal of 98-99.4%. In addition, the use of a CTA allowed for recycling experiments under biphasic conditions for ROMP of NBE, were 3a and 5a were active for several cycles. Besides less active, 3a was more stable, once it was active for more cycles. Low Ru contamination was observed for the polymers after each cycle (8-75 ppm), a Ru-removal of 98-99.8%. <br /> As a second part of the work, the novel [RuCl2(PPh3)2(4-CH2R-pip)] complexes, with R = H (1), Ph (2) or OH (3), were synthesized and applied as initiators for ROMP of norbornene (NBE) and norbornadiene (NBD) under different reaction times, temperatures and monomer concentrations. There was clear difference in the homopolymer yields in the order 1 > 2 > 3 at [monomer]/[Ru] molar ratio of 5000, at 25 &deg;C for 5-60 min. Difference in the yields tend to disappear at 50 &deg;C, with quantitative yields for 15-30 min with any type of initiator. Results from copolymers obtained at RT for 60 min from fixed amounts of NBE with four different amounts of NBD suggest that the type of initiator also affects the reactions, with more insertion of NBD with 1. The occurrence of cross-linking enhanced as the NBD loading increased, evidenced by decrease in the Mc and increase in the Tg values. <br /> In other part of PhD, the novel RuIII complex [RuCl3(PCy3)2] was synthesized and characterized, being stable in air. The complex was applied as initiator for ROMP in air and presented significant difference in reactivity for ROMP of norbornene (NBE) and norbornadiene (NBD). Quantitative yields of polyNBD were obtained instantaneously at 25 &deg;C, whereas 40 % of polyNBE resulted for 5 min at 25 &deg;C or 95% for 60 min at 50 &deg;C. Copolymerization of NBE and NBD with different starting [NBD]/[Ru] molar rations at 25 &deg;C resulted in materials with large amount of NBD. Tg values changed from 37 (polyNBE) to 90 &deg;C (poly[NBE-co-NBD]) as the NBD loading increased. Morphological characterization showed that the copolymers present a tendency to be more organized as the NBD loading decreases, with a well-defined honeycomb-like pattern for the copolymer isolated from the run with the lowest NBD load.
235

Catalytic synthesis and modification of heterocycles

Mahy, William January 2016 (has links)
The following thesis outlines work carried out during the past three years for the discovery and investigation of catalytic methodologies towards the synthesis and modification of heterocycles, namely cyclic carbamates, carbonates and their sulfur analogues. Chapter 1 summarises the current catalytic methods reported in the literature towards the synthesis and modification of functionalized 2-oxazolidinones. This introduction highlights the diverse range of methods and catalysts that have been developed and their scope and limitations. In addition the review highlights the importance of these structural motifs and suggests areas in which the following research fulfills unmet needs. Chapter 2 reports the discovery and development of a one-pot two-step copper-catalysed methodology towards the synthesis of N-aryl oxazolidinones from amino alcohol carbamates. The scope of both the N-aryl substituent as well as oxazolidinone functionalization is presented in addition to preliminary investigations into the mechanisms of both reactions. Chapter 3 presents the application of the previously reported one-pot process towards the synthesis of a number of medicinally active molecules and blockbuster pharmaceuticals. The one-pot two-step copper-catalysed reaction was utilized to synthesise a common intermediate in the synthesis of a number of oxazolidinone-based pharmaceuticals. The complete syntheses of Toloxatone, Linezolid, Tedizolid and Rivaroxaban are reported. Chapter 4 reports the modification of N-aryl oxazolidinones towards a diverse library of N-aryl oxazolidinethiones. The reactivity of these structures, in addition to N-alkyl oxazolidinethiones, towards transition metal catalysis was investigated and revealed a ruthenium catalysed O- to S-alkyl migration to afford structurally diverse thiazolidinones. Investigations into the substrate scope and mechanism were also carried out, suggesting a pseudo-reversible radical pathway drawing mechanistic parallels to the classic Barton-McCombie reaction. Chapter 5 details further development of the pseudo-reversible radical pathway for the regioselective rearrangement of dioxolane-2-thiones using Pd(PPh3)4 as a catalyst. The scope of the reaction is reported for the formation of highly selective, highly substituted sulfur-rearrangement products.
236

Chelating phosphine complexes of ruthenium for the co-ordination and activation of small molecules

Ledger, Araminta January 2011 (has links)
No description available.
237

Conversion of alcohols into amines by borrowing hydrogen

Hamid, Malai H. S. A. January 2008 (has links)
This thesis describes the development of a more economical catalytic system for the N-alkylation of amines by “borrowing hydrogen” and its application in the synthesis of a variety of amines including the dopamine agonist Piribedil and the antihistamine agents Antergan and Tripelennamine. <b>Chapter 2</b> describes the development of the ruthenium-catalysed N-alkylation of primary amines with primary alcohols by “borrowing hydrogen”. <b>Chapter 3</b> describes the application of the ruthenium-catalysed N-alkylation of secondary amines with primary alcohols by “borrowing hydrogen”. The ruthenium-catalysed synthesis of dimethylamines by “borrowing hydrogen” is also described and a mechanistic proposal for the N-alkylation of alcohols with amines has been proposed. <b>Chapter 4</b> describes the role of amines in pharmaceuticals and the ruthenium-catalysed synthesis of Piribedil, Antergan and Tripelennamine by “borrowing hydrogen”.
238

Efeito da acidez-&pi; de ligantes ancilares na atividade de complexos carbonílicos de rutênio em ROMP de norborneno / Effect of acidity-&pi; of ancillary ligands in the activity of ruthenium carbonyl complexes for ROMP of norbornene

Ferraz, Camila Palombo 24 February 2010 (has links)
Os complexos [RuCl2(PPh3)3], cct-[RuCl2(CO)2(PPh3)2], ttt-[RuCl2(CO)2(PPh3)2], [RuCl2(CO)2(PPh3)(pip)] e [RuCl2(CO)(PPh3)2(DMF)] foram investigados em ROMP de norborneno. O objetivo foi observar a influência eletrônica das moléculas CO, PPh3, piperidina e dimetilformamida como ligantes ancilares na reatividade dos complexos. Experimentos realizados por 1 h à 50&deg;C na razão [NBE]/[Ru] = 5000 mostraram que o complexo [RuCl2(CO)2(PPh3)(pip)] é inerte para ROMP, o complexo cct-[RuCl2(CO)2(PPh3)2] apresentou valores não maiores que 1% e o complexo ttt-[RuCl2(CO)2(PPh3)2] formou 3,75% de poliNBE. Sugere-se que a reação ocorra pela liberação de uma molécula de CO para a formação do complexo carbeno, o que explica a reatividade dos diferentes complexos. O complexo [RuCl2(CO)(PPh3)2(DMF)] foi ativo tanto a 50 como a 25 &deg;C, com 25,0 and 12,2% de rendimento, respectivamente, com a razão [NBE]/[Ru] = 5000 por 1 h. A atividade desse complexo está associada à liberação da molécula DMF, como observado nos espectros de RMN de 31P e UV-visível. Os valores de IPD e Mn foram 1,7-1,8 e na ordem de 104 g/mol, respectivamente. A outra espécie presente em solução foi observada por RMN de 31P na razão de 2/3 o qual foi inerte para ROMP. Assim, considerando apenas 1/3 de espécie ativa, o rendimento de poliNBE pode ser aceito como cerca de 75 e 36% à 50 e 25 &deg;C, respectivamente. O valor à 50 &deg;C é similar àquele obtido com o precursor [RuCl2(PPh3)3] (70% de rendimento em 5 min) e melhor que à 25 &deg;C, no qual o precursor é inerte. Os resultados obtidos mostraram que os complexos contendo CO ácido-&pi; como ligante ancilar podem ser ativos para ROMP de norborneno quando uma posição lábil no complexo ocorra. / The complexes [RuCl2(PPh3)3], cct-[RuCl2(CO)2(PPh3)2], ttt-[RuCl2(CO)2(PPh3)2], [RuCl2(CO)2(PPh3)(pip)] and [RuCl2(CO)(PPh3)2(DMF)] were investigated for ROMP of norbornene. The aim is to observe the electronic influence of the CO, PPh3, piperidine and dimethylformamide molecules as ancillary ligands in the reactivity of the complexes. Experiments performed for 1 h at 50 &deg;C with the ratio [NBE]/[Ru] = 5000 showed that the complex [RuCl2(CO)2(PPh3)(pip)] is inert for ROMP, the complex cct-[RuCl2(CO)2(PPh3)2] yielded values not higher than 1% and the complex ttt-[RuCl2(CO)2(PPh3)2] provided 3.75% of polyNBE. It is suggested that the reactions occur via release of a CO molecule for the formation of the carbene complex, thus explains the reactivity of the different complexes. The complex [RuCl2(CO)(PPh3)2(DMF)] was active either at 50 or 25 &deg;C, with 25.0 and 12.2% yield, respectively, with the ratio [NBE]/[Ru] = 5000 for 1 h. The activity of this complex is associated to the release of the DMF molecule, as observed in the 31P NMR and UV-visible spectra. The IPD and Mn values were 1.7-1.8 and 104 g/mol in magnitude. Other specie present in solution was observed in the 31P NMR spectra in a ratio of 2/3 which is inert for ROMP. Thus, considering just 1/3 of active specie, the yield of polyNBE can be acceptable as c.a. 75 and 36% at 50 or 25 &deg;C, respectively. The value at 50 &deg;C is similar to that obtained with the precursor [RuCl2(PPh3)3] (70% yield for 5 min) and better at 25 &deg;C, where the precursor is inert. The obtained results showed that the complexes containing &pi;-acid CO as ancillary ligand can be active for ROMP of norbornene when a labile position in the complex occurs.
239

Sintonia eletrônica e estéreo de ligantes ancilares na reatividade de catalisadores para polimerização via metátese / Electronic and steric tuning of ancilary ligands in the reactivity of catalysts for metathesis polymerization

Sá, José Luiz Silva 08 August 2008 (has links)
O complexo [RuCl2(PPh2Bz)3] (1) é ativo em ROMP de norborneno. À 50 ºC na presença de EDA, observa-se prontamente precipitação de polímero. Obtendo-se cerca de 50% de rendimento tanto por 5 min como 30 min. O valor do IPD é alto quando aumenta-se o tempo de reação. Este complexo apresenta grandes rendimentos quando aumenta-se a razão [NBE]/[Ru], com quantitativo rendimento quando [NBE]/[Ru] = 15.000. Quando a razão [NBE]/[Ru] é 1.000, é obtido polímeros com cadeias polimodais. Trocando uma molécula de PPh2Bz em 1 por piperidina, o novo complexo [RuCl2(PPh2Bz)2pip] (2) é ativo a 25 ºC por 30 min com 92% de rendimento (PDI = 2.22). Observa-se rendimento quantitativo a 50 ºC por 30 min. O aumento da razão [NBE]/[Ru] diminui o rendimento para este complexo. Os complexos [RuCl2(PPh2Bz)2(nic)2] (3) e [RuCl2(PPh2Bz)2(isn)2] (4) não mostraram boa atividade a 25 ºC por 30 min. Obtém-se 7.2% de rendimento a 50 ºC por 5 min e 12.0% a 30 min com 5&micro;L de EDA. / The complex [RuCl2(PPh2Bz)3] (1) is active in ROMP of norbornene. At 50 °C in presence of EDA, it is observed promptly precipitation of polymer. It is obtained c.a. 50% yield at 50 ºC for either 5 min or 30 min. The PDI value is larger when increasing the reaction time. This complex presents high yields when increasing the [NBE]/[Ru] ratio, with a quantitative reaction when [NBE]/[Ru] = 15,000. When the [NBE]/[Ru] ratio is 1,000, it is obtained polymodal polymer chains. Changing one PPh2Bz molecule in 1 for piperidine, the new complex [RuCl2(PPh2Bz)2pip] (2) is active at 25 ºC for 30 min with 92% yield (PDI = 2.22). Quantitative yield is obtained at 50 ºC for 30 min. The increase of [NBE]/[Ru] ratio affords the decrease in the yield when using this complex. The complexes [RuCl2(PPh2Bz)2(nic)2] (3) and [RuCl2(PPh2Bz)2(isn)2] (4) do not show good activity at 25 ºC up to 30 min. It is obtained 7.2% yield at 50 ºC for 5 min and 12.0% for 30 min with 5&micro;L of EDA.
240

A Study of Carbon Dioxide Capture and Catalytic Conversion to Methane using a Ruthenium, “Sodium Oxide” Dual Functional Material: Development, Performance and Characterizations

Wang, Shuoxun January 2018 (has links)
The increasing CO2 level in the atmosphere, mostly attributed to anthropogenic activities, is overwhelmingly accepted to be the main greenhouse gas responsible for climate change. Combustion of fossil fuel is claimed to be the major cause of excess CO2 emission into the atmosphere, but human society will still rely heavily on fossil fuel for energy and feedstock supplements. In order to mitigate the environment-energy crisis and achieve a sustainable developing mode, Carbon Capture, Utilization and Storage (CCUS) is an effective method and attracts considerable interests. Rather than conventional aqueous amine-based liquid absorbent, e.g. the toxic, corrosive and energy intensive monoethanolamine (MEA), solid adsorbents are preferable for CO2 capture. CO2 utilization via CO2 conversion to fuel or other value-added products is favored over CO2 storage. Also it is preferred that no transportation of captured CO2 is required. Capturing and converting CO2 to fuel, such as synthetic natural gas or CH4 is particularly useful if it is produced at the site of CO2 generation. The converted CO2 can then be recycled to the inlet of the power plant or integrated into existed fuel infrastructure eliminating any transportation. This thesis presents a study of the development, performance and characterizations of a newly discovered (second generation) dual functional material (DFM) for CO2 capture and catalytic conversion to methane in two separated steps. This material consists of Ru as the methanation catalyst and “Na2O” obtained from Na2CO3 hydrogenation as the CO2 adsorbent, both of which are deposited on the high surface area γ-Al2O3 support. The Ru, “Na2O” DFM captures CO2 from O2- and steam-containing flue gas at temperature from 250 °C to 350 °C in step 1 and converts it to synthetic natural gas (CH4) at the same temperature with addition of H2 produced from excess renewable energy (solar and/or wind energy) in step 2. The heat generated from methanation drives adsorbed CO2 to Ru by spillover from the adsorption sites and diffuse to Ru for methanation. This approach utilizes the heat in the flue gas for both adsorption and methanation therefore eliminating the need of external energy input. The second generation DFM was developed with a screening process of solid adsorbent candidates. Initial adsorption studies were conducted with powdered samples for CO2 capture capacity, methanation capability, and resistance to an O2-containing simulated flue gas feed. The new composition of DFM was then prepared with tablets for future industrial applications and scaled up to 10 grams suitable for testing in a fixed bed reactor. Parametric and 50-cycle aging studies were conducted in a newly constructed scaled-up fixed bed reactor using 10 grams of DFM tablets in the simulated flue gas atmosphere for CO2 capture. With the presence of O2 in CO2 feed gas for step 1, the Ru catalyst is oxidized but must be rapidly reduced in step 2 to the active metallic state. Parametric studies identified 15% H2 is required for stable operation with no apparent deactivation. The parametric plus 50-cycle aging studies demonstrated excellent stability of the second generation DFM. A kinetic study was also conducted for the methanation step using powdered DFM but prepared via the tablet method to minimize any mass transfer and diffusion influence on the methanation rate. An empirical rate law was developed with kinetic parameters calculated. The methanation rate of captured CO2 is highly dependent on H2 partial pressure (approaching a reaction order of 1) while essentially zero reaction order of CO2 coverage was determined. The kinetic study highlights the importance of H2 partial pressure on the methanation process. Characterizations were conducted on the ground fresh and aged (underwent parametric and aging studies) DFM tablets. BET surface area, H2 chemisorption, X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM) images and scanning transmission electron microscope- energy dispersive spectroscopy (STEM-EDS) mapping were utilized to study the material changes between fresh and aged samples. From fresh to aged, similar BET surface area was measured, improved both Ru and “Na2O” dispersion, and decreased Ru cluster size was observed while no definitive proof of the nature of the sodium species was obtained via XRD. The second generation DFM containing 5% Ru, 6.1% “Na2O” / Al2O3 was shown to possess the capability of capturing CO2 from O2-containing simulated flue gas and subsequent methanation with addition of H2 produced from excess renewable energy (or from chemical processes) with twice the CO2 and CH4 capacity relative to the first generation DFM. Activity, selectivity and stability has been demonstrated for the second generation DFM. We envision swing reactors to be utilized commercially where the flue gas feed for step 1 and H2 for step 2 are throttled alternatively between each reactor for continuous operation.

Page generated in 0.0358 seconds