1 |
Caractérisation et rôle des lymphocytes T CD4+ mémoires SAMHD1low au cours de l'infection par le VIH-1 / TO STUDY THE ROLE OF CD4+ SAMHD1low MEMORY CELLS IN HIV-1 INFECTIONHani, Lylia 19 December 2018 (has links)
La mise en évidence du rôle de la molécule SAMHD1 dans l’infection par le VIH-1 en tant que facteur de restriction a ouvert de nouvelles perspectives dans la compréhension de la pathogénicité du virus.En effet, il a été clairement démontré que dans les cellules myéloïdes comme les monocytes/macrophages et les cellules dendritiques ainsi que les lymphocytes T CD4+ quiescents, SAMHD1 jouait un rôle important dans la protection de ces cellules de l’infection. En revanche, le rôle de cette molécule dans l’infection des lymphocytes activés, qui sont souvent la cible préférentielle du virus, n’est pas élucidé.Nos résultats ont révélé l'existence d'une sous-population de lymphocytes T CD4+ mémoires exprimant de faibles niveaux de SAMHD1 (CD4+ CD45RO+ SAMHD1low), tandis que la grande majorité des lymphocytes expriment cette molécule à des niveaux plus élevés (94±0.7%). Nous montrons également que ces cellules sont hautement différenciées, qu’elles expriment en larges proportions le marqueur de cycle cellulaire Ki67 et qu’elles sont enrichies en cellules « T helper 17 » (Th17) dans le sang périphérique.De plus, la fréquence de la population CD4+ CD45RO+ SAMHD1low, est diminuée de manière significative chez les patients infectés par le VIH-1 par rapport aux sujets sains. De manière intéressante, nous montrons que dans les ganglions, les cellules T follicular helper (Tfh) expriment faiblement SAMHD1 et sont plus susceptibles à l’infection par le VIH-1 in vitro.L’ensemble de ces résultats suggère que les cellules SAMHD1 low représentent une cible préférentielle pour le virus et pourraient contribuer au réservoir viral.Les objectifs de ce projet sont:1. Déterminer si les cellules SAMHD1low contiennent plus de virus par comparaison aux cellules mémoires SAMHD1high et comparer les séquences virales isolées des cellules mémoires SAMHD1low et SAMHD1high.2. Caractérisation des cellules SAMHD1low au niveau moléculaire par une analyse transcriptomique qui permettra la mise en évidence de marqueurs membranaires. / We have previously reported the presence of memory CD4+ T cells that display low levels of SAMHD1 (SAMHD1low ) enriched in Th17 and Tfh cells. Here we investigated gene expression profile and the size and composition of HIV DNA population in SAMHD1 low cells.A total of 36 individuals on c-ART (median: 7y) with median CD4+ counts and nadir of 549 cells/ul and 210 cells/ul respectively, including 6 elite controllers (EC, CD4+: 900 cells/ul) and 8 healthy donors were studied. Blood memory CD4+ CD45RO+ SAMHD1low, CD45RO+ SAMHD1high and naive CD45RO- SAMHD1high cells were sorted. Cell associated HIV-1 DNA levels were quantified (HIV DNA Cell, Biocentric) and ultra-deep-sequencing (UDS, 454/Roche) of partial env (C2/V3) HIV-1 DNA was performed. Gene expression profile on sorted cells was deternined with RNA-Sequencing (Illumina RNASeq technology). Levels of HIV-1 DNA were significantly higher in memory SAMHD1low cells compared to SAMHD1high cells (4.5 [3.1-6.2] vs 3.8 [2.9-5.7] log/10 6 cells, respectively, p=0.02) among c-ART individuals, while naïve CD45RO- SAMHD1high showed lower levels (3.1 [1.6-4.4]). EC exhibited low HIV-1 DNA level in both SAMHD1low and SAMHD1high (1.6 and 2.3 log/10 6 cells respectively p>0.05). Naïve CD45RO - SAMHD1 high cells from EC showed lower DNA compared to naïve cells from c-ART pts (1.6 and 3.1 log/10 6 cells, respectively, p=0.01). Phylogenetic analyses revealed well-segregated HIV-DNA populations between subsets with significant compartmentalization between SAMHD1low and SAMHD1high cells in all but 2 participants (p<0.001) and limited viral exchange. Moreover SAMHD1low cells exhibited a distinct gene profile as compared to SAMHD1high allowing thus further characterisation of these cells.This pilot study revealed distinct HIV DNA populations in size and composition associated with unique genes profile in memory SAMHD1low cells. We show that memory SAMHD1low cells exhibit distinct genes profile which segregates them from the SAMHD1 high counterpart, and contain the highest level of HIV-1 DNA. We reveal distinct/well-segregated HIV-1 DNA populations in both subsets, suggesting minimal viral exchange.
|
2 |
DIFFERENTIAL HIV-1 SUSCEPTIBILITY OF PRIMARY MACROPHAGE POPULATIONSCenker, Jennifer Jean 02 June 2017 (has links)
No description available.
|
3 |
Étude des fonctions cellulaires de SAMHD1, facteur de restriction du VIH-1 / Study of the cellular functions of the HIV-1 restriction factor SAMHD1Louis, Tania 08 July 2015 (has links)
L'étude des interactions entre un pathogène et son hôte, bien qu'ayant généralement pour objectif de contrôler l'infection par le pathogène, permet parfois de découvrir des éléments fondamentaux sur le fonctionnement de l'hôte. J'ai choisi d'étudier les fonctions cellulaires d'une protéine initialement identifiée comme un facteur de restriction du VIH-1. SAMHD1 (SAM domain and HD domain-containing protein 1) est une protéine exprimée dans la plupart des tissus humains. Elle est capable d'hydrolyser les déoxyribonucléotides triphosphates (dNTP) cellulaires et possède une activité nucléase ciblant différents acides nucléiques dont les ARN simple brin in vitro. Des mutations dans le gène SAMHD1 entraînent le développement d'une maladie auto-immune pouvant conduire à la mort précoce des nourrissons, ce qui suggère un rôle de la protéine correspondante dans la régulation de la réponse immunitaire. Il a été montré que SAMHD1 est un facteur de restriction capable d'empêcher l'infection de cellules ne se divisant pas par le VIH-1. La protéine virale Vpx, exprimée par le VIH-2, est capable d'induire la dégradation de SAMHD1 par le protéasome et permet de rendre permissives les cellules initialement résistantes à l'infection par le VIH. SAMHD1 est en réalité capable de restreindre l'infection par des virus aussi différents que les rétrovirus et le virus de l'herpès simplex 1. Néanmoins, le mécanisme permettant à SAMHD1 de contrecarrer différents virus reste aujourd'hui sujet à controverse. Initialement considéré comme agissant en dégradant les dNTP cellulaires, SAMHD1 semble également capable de dégrader l'ARN génomique du VIH-1. Si de nombreux travaux portent sur l'activité antivirale de SAMHD1, peu de données sont disponibles concernant la fonction cellulaire de cette protéine. Or SAMHD1 est capable de réguler la quantité de dNTP cellulaires et d'interagir avec certains acides nucléiques. Ces données font de SAMHD1 un acteur potentiel de différents processus cellulaires fondamentaux sensibles à la quantité intracellulaire de dNTP, notamment la réplication du génome ou la réparation des dommages à l'ADN. J'ai montré au cours de mon doctorat que SAMHD1 module le cycle cellulaire et notamment que la surexpression de cette protéine ralentit la prolifération cellulaire. J'ai également observé que la surexpression de SAMHD1 augmente la sensibilité des cellules aux agents induisant des ruptures double brin de l'ADN. De plus, j'ai découvert qu'en cas de ruptures double brin de l'ADN cellulaire, SAMHD1 est régulé de façon spécifique par phosphorylation sur sa thréonine 592 et est recruté aux sites de cassures. D'autres travaux ont confirmé l'importance de la régulation de SAMHD1 au cours du cycle cellulaire, sa surexpression et sa réduction induisant toutes deux un ralentissement de la prolifération cellulaire. En complément de mes résultats, quelques études suggèrent que SAMHD1 joue un rôle dans le maintien de l'intégrité du génome, qui pourrait être dû à son effet sur la réponse aux dommages à l'ADN. Dans l'ensemble, ces résultats font de SAMHD1 un garant de l'homéostasie cellulaire. J'ai de plus montré que l'expression de SAMHD1 est réduite chez environ 80% des patients souffrant de leucémie lymphoïde chronique. La perte de cette protéine est donc corrélée à l'apparition d'une maladie découlant de la perturbation du fonctionnement cellulaire. L'étude d'échantillons d'autres types de tumeurs montre que, dans de moindres proportions, l'altération de l'expression de SAMHD1 est une caractéristique générale des cancers. Mes travaux de doctorat soulignent ainsi le rôle fondamental de SAMHD1 dans le maintien de l'intégrité cellulaire. / Understanding host pathogen interactions reveals not only important information regarding the replication cycle of the pathogen but it often leads to the discovery and better understanding of key biological processes of the host. The aim of my PhD was to decipher the cellular functions of the HIV-1 restriction factor SAMHD1. SAMHD1 (SAM domain and HD domain-containing protein 1) is expressed in most human tissues. This protein is able to hydrolyze cellular deoxyribonucleotides triphosphate (dNTP) and possesses a nuclease activity primarily against single stranded RNA. Mutations in SAMHD1 have been described in patients suffering from an auto-immune disease causing premature death of newborns. This phenotype suggests a role of SAMHD1 in the control of immune response. Moreover, SAMHD1 restricts HIV-1 in non-cycling cells. The HIV-2 accessory protein Vpx induces SAMHD1 degradation by the proteasome, conferring cell permissiveness to HIV. In fact, the antiviral activity of SAMHD1 has been extended to other viruses including Herpes Simplex Virus 1 and Hepatitis B virus. Nevertheless, the mechanism by which SAMHD1 restrict HIV replication is debated. It was initially thought to act by depleting the dNTP pool but recent studies highlighted a potential role of SAMHD1 nuclease function in degrading HIV-1 genomic RNA. Many studies aiming at understanding the antiviral activity of SAMHD1 are being pursued, whereas little is known about the cellular function of this protein. The fact that SAMHD1 is able to regulate the cellular dNTP pool and to interact with nucleic acids suggests a key role of this protein in cellular processes, such as DNA replication and repair. During my PhD, I showed that SAMHD1 modulates the cell cycle, as the overexpression of this protein slows down cell proliferation. I also observed that SAMHD1 overexpression increases cellular sensitivity to double strand DNA breaks-inducing agents. Moreover I discovered that, after double strand breaks induction, SAMHD1 is specifically regulated by phosphorylation on its threonine 592 and recruited at the damaged sites. Other studies confirmed the importance of SAMHD1 regulation along the cell cycle as its overexpression and depletion both decrease cell proliferation. In addition to my observations, some studies suggested that SAMHD1 is important to maintain genomic integrity, presumably through its implication in DNA repair. Altogether, these results promote SAMHD1 as a key player in cellular homeostasis. I additionally showed that SAMHD1 expression is reduced in 80% of patients suffering from chronic lymphocytic leukemia (CLL). SAMHD1 loss is therefore correlated to the development of a disease due to disturbances of cellular integrity. Looking at samples from different types of tumors, I showed that SAMHD1 loss is shared between all tested cancers, although at lesser extent than in CLL. My PhD work underlines the central role of SAMHD1 to maintain cellular integrity.
|
4 |
The role of Samhd1 in controlling DNA damage and tumour development in in vivo modelsCostas Ramon, Santiago 20 September 2023 (has links)
Systemic autoimmunity describes a group of detrimental conditions, characterized by loss of immunologic self-tolerance. Pattern recognition receptors (PRR) detect recurrent microbial structures including nucleic acids. Nucleic acid-specific PRRs are not well equipped to discriminate between self and non-self nucleic acids and their aberrant activation leads to autoimmune conditions, driven by chronic activation of the type I interferon (IFN) system. This concept has been established by research on the molecular mechanisms underlying the rare Aicardi-Goutières syndrome (AGS). Loss of function mutations in the gene SAMHD1 cause AGS. SAMHD1 was first described as a deoxyribonucleotide (dNTP) triphosphohydrolase (dNTPase) and its activity is tightly regulated during the cell cycle to ensure the correct cellular supply of dNTPs. Cells decrease SAMHD1 dNTPase activity during S phase where the DNA must be replicated and once the S phase is over, dNTPase activity is restored and the dNTP levels are reduced. Loss of SAMHD1 causes an increase of the cellular dNTP concentration during phases of the cell cycle, a well-known trigger for DNA damage, but its consequences has not been addressed yet thoroughly. Recently, SAMHD1 has been also reported to promote homologous recombination directly at the site of DNA double strand breaks (DSB) upon genotoxic stress. By interacting with the protein CtIP, SAMHD1 helped to coordinate the MRN complex and promotes DSB repair. Loss of SAMHD1 impaired this repair mechanism, causing genome instability. Interestingly, this activity of SAMHD1 has also been recently shown to promote restart of stalled replication forks. Lack of SAMHD1 lead to an increase of stalled replication forks and DSBs. How the different activities of SAMHD1 remain balanced and are activated under specific conditions still remains unknown. Additionally, inactivating mutations in SAMHD1 have recurrently been identified in various types of cancers, raising the question, if the protein might function as a tumour suppressor. However, up to date, no in vivo study has addressed the role of SAMHD1 in preventing DNA damage or cancer development, and its relationship to an uncontrolled type I IFN response. In this work, Samhd1-deficient mice were screened in search for sign of DNA damage and an increase in micronucleated erythrocytes, a hallmark for genome instability, was found in comparison with their littermate controls. This increase was still present upon inactivation of nucleic acid sensing pathways, indicating that it was independent of the status of type I IFN response. HSC competitive transplantation experiments with Samhd1-deficient and control HSCs showed a minor contribution of Samhd1 in maintaining lymphogenesis. Despite these findings, Samhd1-deficient mice do not develop any autoimmune disease nor cancer up to 2 years of observation. Previous reports showed a possible relation between loss of SAMHD1 and p53 activation. We inactivated p53 in Samhd1 ko mice, which resulted in accelerated lethality and an earlier onset of tumour formation when compared with p53 ko mice. However, the underlying molecular mechanisms of both observations remains to be fully elucidated. In contrast to the results with p53, inactivation of DNA mismatch repair (knockout of Pms2) in Samhd1 ko mice, had no effect on the tumour-free survival in comparison with Pms2 ko mice. Inactivation of either p53 or Pms2 in Samhd1 ko mice did not altered the spontaneous type I IFN activation. To understand better the different activities described for Samhd1 – dNTPase and DNA damage-related activities –, the dNTPase-inactivating mutations HD238/239AA were knocked into the endogenous Samhd1 gene using CRISPR/Cas9. Using this mouse model, we found that the mutant Samhd1 protein is rapidly degraded in the proteasome, leading to almost complete absence of Samhd1 in the new mouse strain, as seen in patient with similar mutation in Samhd1. These results demonstrated that in patients with mutations in the dNTPase domain, the phenotype is most likely driven by a complete absence of Samhd1 and only by a selective loss of the dNTPase activity. Our work provides new insights in the understanding of Samhd1 as regulator of DNA damage and establishes new ground for further research on the link between DNA damage and type I IFN response.
|
5 |
Comparison of Murine and Human SAMHD1’s Role in Retroviral Restriction and Cell Cycle ProgressionWang, Feifei January 2015 (has links)
No description available.
|
6 |
A nationwide survey of Aicardi-Goutieres syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study / 本邦におけるAicardi-Goutieres症候群の全国調査の結果、TREX1遺伝子優性型変異と凍瘡症状に強い関連性を認めたAbe, Junya 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18135号 / 医博第3855号 / 新制||医||1001(附属図書館) / 30993 / 京都大学大学院医学研究科医学専攻 / (主査)教授 山田 亮, 教授 三森 経世, 教授 中畑 龍俊 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
|
7 |
Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1Antonucci, Jenna Marie 13 September 2018 (has links)
No description available.
|
8 |
Etablierung eines reprogrammierten humanen neuronalen Modells zur Untersuchung einer entzündlichen LeukodystrophieHänchen, Vanessa 18 April 2024 (has links)
Hintergrund Das Aicardi-Goutières Syndrom (AGS) ist eine genetisch bedingte Enzephalopathie, die durch Mutationen in neun verschiedenen Genen verursacht wird und zu einer Neurodegenration mit globaler Entwicklungsverzögerung führt. Die Mutationen führen zu einer Fehlregulation des Metabolismus und der immunologischen Erkennung intrazellulärer Nukleinsäuren sowie einer konstitutiven Aktivierung von Typ 1-Interferon (IFN). Bei AGS-Patienten sind Kalzifizierungen der Basalganglia sowie Demyelinisierungen der weißen Substanz charakteristisch. Fragestellung: Biallele Mutationen in den Genen, TREX1 und SAMHD1, sind Ursache des AGS Typ 1 und AGS Typ 5. Die DNA-Exonuklease TREX1 degradiert intrazelluläre Nukleinsäure-Metabolite, die während zellulärer Prozesse gebildet werden. Die Triphosphohydrolase SAMHD1 spielt vorrangig in der Regulation des intrazellulären dNTP-Pools und des RNA-Metabolismus eine wichtige Rolle. Die Möglichkeit induzierte pluripotente Stammzellen (iPSC) zu generieren und damit aus somatischen Zellen embryonale Stammzellen nachzubilden, um diese in unterschiedliche Zelltypen zu differenzieren, ermöglicht es, Zelltypen von schwer zugänglichen Geweben wie das Gehirn zu erforschen. Die vorliegende Arbeit untersucht die Auswirkungen einer TREX1- und SAMHD1-Defizienz in neuronalen Zellen. Dazu wurden reprogrammierte neuronale Modelle für das AGS Typ 1 und AGS Typ 5 etabliert. Ziel war hierbei die Aufdeckung bisher unbekannter molekularer Mechanismen, die zur Entstehung einer Typ 1-IFN-induzierten Inflammation
und Neurodegeneration bei Patienten mit AGS führt. Material und Methoden: Als Ausgangspunkt dieser Arbeit dienten primäre Fibroblasten und PBMCs, die aus Hautbiopsien bzw. Blutproben von AGS-Patienten mit Mutationen in den Genen, TREX1 und SAMHD1, gewonnen wurden. Durch eine Reprogrammierung dieser patientenspezifischen Zellen wurden pluripotente Stammzellen induziert und anschließend über die Bildung von Embryonalkörperchen und neuronale Vorläuferzellen in neuronale Zellen differenziert. Um die etablierten neuronalen Zelllinien funktionell zu charakterisieren, wurden isogene Zelllinien etabliert. Hierbei wurde mittels Genomeditierung der patientenspezifischen iPS-Zellen die krankheitsassoziierte Mutation behoben und auf diese Weise isogene Zelllinien mit identischem genetischen Hintergrund generiert, die sich lediglich durch die Anwesenheit oder das Fehlen der krankheitsrelevanten Mutation unterscheiden. Unter Nutzung verschiedener molekularbiologischer Methoden wurden die patientenspezifischen neuronalen Zellen näher untersucht. Um die in Patienten-Fibroblasten nachgewiesene erhöhten Typ 1-IFN-Aktivität auch im neuronalen Zellmodell zu untersuchen, wurden in dieser Arbeit AGS-patientenspezifische neuronale Zellen und deren Vorläufer auf eine Erhöhung der IFN-Signatur überprüft. Um die etablierten neuronalen Zellmodelle eines AGS auf zellulären Stress in Form von ROS zu untersuchen, wurden patientenspezifische NPCs im Vergleich zu WT-Linien mittels DHR-Assay analysiert. Weiterhin wurde aus neuronalen Zellen mit AGS-spezifischen Mutationen mittels einer speziellen Kultivierungsmethode zur in vitro Separation von Axonen und Dendriten in proximale und distale Bereiche und einem nachfolgenden Tracking von Lysosomen und Mitochondrien per Live cell imaging die subzelluläre Verteilung dieser Organellen untersucht. Mittels immunhistochemischer Färbungen wurden zudem aus iPSC bzw. NPCs gewonnene neuronale Zellen mit AGS-spezifischen Mutationen die zelluläre Expression von Proteinen, die eine Rolle bei neurodegenerativen Krankheiten spielen, untersucht. Ergebnisse Die Nutzung der iPSC-Technologie eröffnet besonders für neurodegenerative Krankheiten die Möglichkeit, geeignete zelluläre Krankheitsmodelle zu schaffen. So existieren bereits eine Reihe iPSC-basierter Studien für Alzheimer, Parkinson, Chorea Huntington oder amyotropher Lateralsklerose. Mit der vorliegenden Arbeit wurden iPSC-basierte Modelle für das AGS entwickelt. Als Grundstein dieser Arbeit konnten aus somatischen Zellen von AGS-Patienten pluripotente Stammzellen erzeugt und als iPSCLinien etabliert werden. Die funktionelle Charakterisierung der patientenspezifischen Zellen erfolgte durch die Etablierung isogener Kontrollen mit identischem genetischen Hintergrund, um phänotypische Unterschiede direkt auf die krankheitsspezifischen Mutationen zurückzuführen. Die vorhandenen SAMHD1- und TREX1-Mutationen in den iPS-Zellen der Patienten wurden zunächst mittels Genomeditierung korrigiert. Anschließend wurden iPSC-Linien etabliert. Die patientenspezifischen iPS-Zellen sowie die isogenen Kontrollen wurden über neuronale Vorläuferzellen zu Neuronen differenziert, validiert und funktionell untersucht. Insgesamt konnte gezeigt werden, dass die etablierten Zellmodelle teilweise den Phänotyp eines AGS rekapitulieren. So entsprach die im AGS-Modell neuronaler Vorläuferzellen untersuchte Expression von IFN-stimulierten Genen (ISGs) weitgehend dem typischen Bild einer Interferonopathie und konnte durch den Vergleich mit isogenen Zelllinien auf die TREX1-Mutation der neuronalen Vorläuferzellen zurückgeführt werden. Eine Variabilität der ISG-Expression in ausdifferenzierten neuronalen Zellen könnte verschiedene Ursachen haben. Die Untersuchungen auf zellulären Stress in Form von ROS konnten zeigen, dass sowohl in TREX1- als auch SAMHD1-defizienten neuronalen Vorläuferzellen ein erhöhtes zelluläres Level an ROS vorliegt. Möglicherweise ist dies mit dem festgestellten langsamen Zellwachstum der patientenspezifischen Vorläuferzellen assoziiert. Weiterhin konnte mittels Live cell imaging ein verringertes Mobilitätsverhalten von Lysosomen und Mitochondrien in patienten- spezifischen neuronalen Zellen festgestellt werden, was die Vermutung nahelegt, dass die untersuchten AGS-verursachenden Mutationen in TREX1 und SAMHD1 ursächlich an der Neurodegeneration bei AGS-Patienten beteiligt sind. Ausblick: Die in dieser Arbeit erfolgreich etablierten reprogrammierten neuronalen AGS-Modelle können zukünftig dazu dienen, pathogenetische Prozesse im Gehirn zu untersuchen. Es konnten Grundlagen zur Aufklärung bisher unbekannter molekularer Mechanismen der Neurodegeneration bei AGS-Patienten geschaffen werden. Weiterführend kann das etablierte Modell zur Untersuchung weiterer Aspekte wie der Messung von transkriptomweiten Expressionsprofilen verwendet werden und somit neue Einblicke in die zellintrinsische Aktivierung der Typ 1-IFN-Achse von AGS-Patienten liefen. Um die Rolle von neuronal vorkommenden Proteinen oder Vesikeln bei neuronalen Erkrankungen, insbesondere bei AGS,zu untersuchen, stellt das patientenspezifische AGS-Modell eine wichtige Grundlage dar. Die hier aufgeführten immunhistochemischen Untersuchungen neuronaler Proteine können vertieft und in einem größeren Umfang ausgewertet werden. Die vorteilhaften Eigenschaften der iPSC-basierten neurodegenerativen Modelle ermöglichen neben grundlagenwissenschaftlichen Untersuchungen zur Krankheitsursache auch die Bearbeitung von Fragestellungen zur Behandlung von AGS-Patienten.
|
9 |
SAMHD1 Negatively Regulates the Innate Immune Responses to Inflammatory Stimuli and Viral InfectionQin, Zhihua 30 September 2020 (has links)
No description available.
|
Page generated in 0.0293 seconds