Spelling suggestions: "subject:"SAR amaging"" "subject:"SAR damaging""
1 |
Fast Physical Optics Calculation for SAR Imaging of Complex ScatterersZhao, Yuanhong 25 June 2012 (has links)
No description available.
|
2 |
A Bayesian Approach for Inverse Problems in Synthetic Aperture Radar ImagingZhu, Sha 23 October 2012 (has links) (PDF)
Synthetic Aperture Radar (SAR) imaging is a well-known technique in the domain of remote sensing, aerospace surveillance, geography and mapping. To obtain images of high resolution under noise, taking into account of the characteristics of targets in the observed scene, the different uncertainties of measure and the modeling errors becomes very important.Conventional imaging methods are based on i) over-simplified scene models, ii) a simplified linear forward modeling (mathematical relations between the transmitted signals, the received signals and the targets) and iii) using a very simplified Inverse Fast Fourier Transform (IFFT) to do the inversion, resulting in low resolution and noisy images with unsuppressed speckles and high side lobe artifacts.In this thesis, we propose to use a Bayesian approach to SAR imaging, which overcomes many drawbacks of classical methods and brings high resolution, more stable images and more accurate parameter estimation for target recognition.The proposed unifying approach is used for inverse problems in Mono-, Bi- and Multi-static SAR imaging, as well as for micromotion target imaging. Appropriate priors for modeling different target scenes in terms of target features enhancement during imaging are proposed. Fast and effective estimation methods with simple and hierarchical priors are developed. The problem of hyperparameter estimation is also handled in this Bayesian approach framework. Results on synthetic, experimental and real data demonstrate the effectiveness of the proposed approach.
|
3 |
Sparsity driven ground moving target indication in synthetic aperture radarWu, Di January 2018 (has links)
Synthetic aperture radar (SAR) was first invented in the early 1950s as the remote surveillance instruments to produce high resolution 2D images of the illuminated scene with weather-independent, day-or-night performance. Compared to the Real Aperture Radar (RAR), SAR is synthesising a large virtual aperture by moving a small antenna along the platform path. Typical SAR imaging systems are designed with the basic assumption of a static scene, and moving targets are widely known to induce displacements and defocusing in the formed images. While the capabilities of detection, states estimation and imaging for moving targets with SAR are highly desired in both civilian and military applications, the Ground Moving Target Indication (GMTI) techniques can be integrated into SAR systems to realise these challenging missions. The state-of-the- art SAR-based GMTI is often associated with multi-channel systems to improve the detection capabilities compared to the single-channel ones. Motivated by the fact that the SAR imaging is essentially solving an optimisation problem, we investigate the practicality to reformulate the GMTI process into the optimisation form. Furthermore, the moving target sparsities and underlying similarities between the conventional GMTI processing and sparse reconstruction algorithms drive us to consider the compressed sensing theory in SAR/GMTI applications. This thesis aims to establish an end-to-end SAR/GMTI processing framework regularised by target sparsities based on multi-channel SAR models. We have explained the mathematical model of the SAR system and its key properties in details. The common GMTI mechanism and basics of the compressed sensing theory are also introduced in this thesis. The practical implementation of the proposed framework is provided in this work. The developed model is capable of realising various SAR/GMTI tasks including SAR image formation, moving target detection, target state estimation and moving target imaging. We also consider two essential components, i.e. the data pre-processing and elevation map, in this work. The effectiveness of the proposed framework is demonstrated through both simulations and real data. Given that our focus in this thesis is on the development of a complete sparsity-aided SAR/GMTI framework, the contributions of this thesis can be summarised as follows. First, the effects of SAR channel balancing techniques and elevation information in SAR/GMTI applications are analysed in details. We have adapted these essential components to the developed framework for data pre-processing, system specification estimation and better SAR/GMTI accuracies. Although the purpose is on enhancing the proposed sparsity-based SAR/GMTI framework, the exploitation of the DEM in other SAR/GMTI algorithms may be of independent interest. Secondly, we have designed a novel sparsity-aided framework which integrates the SAR/GMTI missions, i.e. SAR imaging, moving target and background decomposition, and target state estimation, into optimisation problems. A practical implementation of the proposed framework with a two stage process and theoretically/experimentally proven algorithms are proposed in this work. The key novelty on utilising optimisations and target sparsities is explained in details. Finally, a practical algorithm for moving target imaging and state estimation is developed to accurately estimate the full target parameters and form target images with relocation and refocusing capabilities. Compared to the previous processing steps for practical applications, the designed algorithm consistently relies on the exploitation of target sparsities which forms the final processing stage of the whole pipeline. All the developed components contribute coherently to establish a complete sparsity driven SAR/GMTI processing framework.
|
4 |
A Bayesian Approach for Inverse Problems in Synthetic Aperture Radar Imaging / Une approche bayésienne pour les problèmes inverses en imagerie Radar à Synthèse d'OuvertureZhu, Sha 23 October 2012 (has links)
L'imagerie Radar à Synthèse d'Ouverture (RSO) est une technique bien connue dans les domaines de télédétection, de surveillance aérienne, de géologie et de cartographie. Obtenir des images de haute résolution malgré la présence de bruit, tout en prenant en compte les caractéristiques des cibles dans la scène observée, les différents incertitudes de mesure et les erreurs resultantes de la modélisation, devient un axe de recherche très important.Les méthodes classiques, souvent fondées sur i) la modélisation simplifiée de la scène ; ii) la linéarisation de la modélisation directe (relations mathématiques liant les signaux reçus, les signaux transmis et les cibles) simplifiée ; et iii) l'utilisation de méthodes d'inversion simplifiées comme la Transformée de Fourier Inverse (TFI) rapide, produisent des images avec une résolution spatiale faible, peu robustes au bruit et peu quantifiables (effets des lobes secondaires et bruit du speckle).Dans cette thèse, nous proposons d'utiliser une approche bayésienne pour l'inversion. Elle permettrais de surmonter les inconvénients mentionnés des méthodes classiques, afin d'obtenir des images stables de haute résolution ainsi qu'une estimation plus précise des paramètres liés à la reconnaissance de cibles se trouvant dans la scène observée.L'approche proposée est destinée aux problèmes inverses de l'imagerie RSO mono-, bi-, et multi- statique ainsi que l'imagerie des cibles à micromouvement. Les a priori appropriés de modélisation permettant d'améliorer les caractéristiques des cibles pour des scènes de diverses natures seront présentées. Des méthodes d'estimation rapides et efficaces utilistant des a priori simples ou hiérarchiques seront développées. Le problème de l'estimation des hyperparameters sera galement traité dans le cadre bayésin. Les résultats relatifs aux données synthétiques, expérimentales et réelles démontrent l'efficacité de l'approche proposée. / Synthetic Aperture Radar (SAR) imaging is a well-known technique in the domain of remote sensing, aerospace surveillance, geography and mapping. To obtain images of high resolution under noise, taking into account of the characteristics of targets in the observed scene, the different uncertainties of measure and the modeling errors becomes very important.Conventional imaging methods are based on i) over-simplified scene models, ii) a simplified linear forward modeling (mathematical relations between the transmitted signals, the received signals and the targets) and iii) using a very simplified Inverse Fast Fourier Transform (IFFT) to do the inversion, resulting in low resolution and noisy images with unsuppressed speckles and high side lobe artifacts.In this thesis, we propose to use a Bayesian approach to SAR imaging, which overcomes many drawbacks of classical methods and brings high resolution, more stable images and more accurate parameter estimation for target recognition.The proposed unifying approach is used for inverse problems in Mono-, Bi- and Multi-static SAR imaging, as well as for micromotion target imaging. Appropriate priors for modeling different target scenes in terms of target features enhancement during imaging are proposed. Fast and effective estimation methods with simple and hierarchical priors are developed. The problem of hyperparameter estimation is also handled in this Bayesian approach framework. Results on synthetic, experimental and real data demonstrate the effectiveness of the proposed approach.
|
5 |
A Fast Matched Filtered Method for Ground Penetrating Radar Tomographic ImagingGuzel, Yasar 03 September 2019 (has links)
No description available.
|
6 |
Contributions to SAR Image Time Series Analysis / Contributions à l'analyse de séries temporelles d'images SARMian, Ammar 26 September 2019 (has links)
La télédétection par Radar à Synthèse d’Ouverture (RSO) offre une opportunité unique d’enregistrer, d’analyser et de prédire l’évolution de la surface de la Terre. La dernière décennie a permis l’avènement de nombreuses missions spatiales équipées de capteurs RSO (Sentinel-1, UAVSAR, TerraSAR X, etc.), ce qui a engendré une rapide amélioration des capacités d’acquisition d’images de la surface de la Terre. Le nombre croissant d’observations permet maintenant de construire des bases de données caractérisant l’évolution temporelle d’images, augmentant considérablement l’intérêt de l’analyse de séries temporelles pour caractériser des changements qui ont lieu à une échelle globale. Cependant, le développement de nouveaux algorithmes pour traiter ces données très volumineuses est un défi qui reste à relever. Dans ce contexte, l’objectif de cette thèse consiste ainsi à proposer et à développer des méthodologies relatives à la détection de changements dans les séries d’images ROS à très haute résolution spatiale.Le traitement de ces séries pose deux problèmes notables. En premier lieu, les méthodes d’analyse statistique performantes se basent souvent sur des données multivariées caractérisant, dans le cas des images RSO, une diversité polarimétrique, interférométrique, par exemple. Lorsque cette diversité n’est pas disponible et que les images RSO sont monocanal, de nouvelles méthodologies basées sur la décomposition en ondelettes ont été développées. Celles-ci permettent d’ajouter une diversité supplémentaire spectrale et angulaire représentant le comportement physique de rétrodiffusion des diffuseurs présents la scène de l’image. Dans un second temps, l’amélioration de la résolution spatiale sur les dernières générations de capteurs engendre une augmentation de l’hétérogénéité des données obtenues. Dans ce cas, l’hypothèse gaussienne, traditionnellement considérée pour développer les méthodologies standards de détection de changements, n’est plus valide. En conséquence, des méthodologies d’estimation robuste basée sur la famille des distributions elliptiques, mieux adaptée aux données, ont été développées.L’association de ces deux aspects a montré des résultats prometteurs pour la détection de changements.Le traitement de ces séries pose deux problèmes notables. En premier lieu, les méthodes d’analyse statistique performantes se basent souvent sur des données multivariées caractérisant, dans le cas des images RSO, une diversité polarimétrique ou interférométrique, par exemple. Lorsque cette diversité n’est pas disponible et que les images RSO sont monocanal, de nouvelles méthodologies basées sur la décomposition en ondelettes ont été développées. Celles-ci permettent d’ajouter une diversité spectrale et angulaire supplémentaire représentant le comportement physique de rétrodiffusion des diffuseurs présents la scène de l’image. Dans un second temps, l’amélioration de la résolution spatiale sur les dernières générations de capteurs engendre une augmentation de l’hétérogénéité des données obtenues. Dans ce cas, l’hypothèse gaussienne, traditionnellement considérée pour développer les méthodologies standards de détection de changements, n’est plus valide. En conséquence, des méthodologies d’estimation robuste basée sur la famille des distributions elliptiques, mieux adaptée aux données, ont été développées.L’association de ces deux aspects a montré des résultats prometteurs pour la détection de changements. / Remote sensing data from Synthetic Aperture Radar (SAR) sensors offer a unique opportunity to record, to analyze, and to predict the evolution of the Earth. In the last decade, numerous satellite remote sensing missions have been launched (Sentinel-1, UAVSAR, TerraSAR X, etc.). This resulted in a dramatic improvement in the Earth image acquisition capability and accessibility. The growing number of observation systems allows now to build high temporal/spatial-resolution Earth surface images data-sets. This new scenario significantly raises the interest in time-series processing to monitor changes occurring over large areas. However, developing new algorithms to process such a huge volume of data represents a current challenge. In this context, the present thesis aims at developing methodologies for change detection in high-resolution SAR image time series.These series raise two notable challenges that have to be overcome:On the one hand, standard statistical methods rely on multivariate data to infer a result which is often superior to a monovariate approach. Such multivariate data is however not always available when it concerns SAR images. To tackle this issue, new methodologies based on wavelet decomposition theory have been developed to fetch information based on the physical behavior of the scatterers present in the scene.On the other hand, the improvement in resolution obtained from the latest generation of sensors comes with an increased heterogeneity of the data obtained. For this setup, the standard Gaussian assumption used to develop classic change detection methodologies is no longer valid. As a consequence, new robust methodologies have been developed considering the family of elliptical distributions which have been shown to better fit the observed data.The association of both aspects has shown promising results in change detection applications.
|
7 |
ISAR Imaging Enhancement Without High-Resolution Ground TruthEnåkander, Moltas January 2023 (has links)
In synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR), an imaging radar emits electromagnetic waves of varying frequencies towards a target and the backscattered waves are collected. By either moving the radar antenna or rotating the target and combining the collected waves, a much longer synthetic aperture can be created. These radar measurements can be used to determine the radar cross-section (RCS) of the target and to reconstruct an estimate of the target. However, the reconstructed images will suffer from spectral leakage effects and are limited in resolution. Many methods of enhancing the images exist and some are based on deep learning. Most commonly the deep learning methods rely on high-resolution ground truth data of the scene to train a neural network to enhance the radar images. In this thesis, a method that does not rely on any high-resolution ground truth data is applied to train a convolutional neural network to enhance radar images. The network takes a conventional ISAR image subject to spectral leakage effects as input and outputs an enhanced ISAR image which contains much more defined features. New RCS measurements are created from the enhanced ISAR image and the network is trained to minimise the difference between the original RCS measurements and the new RCS measurements. A sparsity constraint is added to ensure that the proposed enhanced ISAR image is sparse. The synthetic training data consists of scenes containing point scatterers that are either individual or grouped together to form shapes. The scenes are used to create synthetic radar measurements which are then used to reconstruct ISAR images of the scenes. The network is tested using both synthetic data and measurement data from a cylinder and two aeroplane models. The network manages to minimise spectral leakage and increase the resolution of the ISAR images created from both synthetic and measured RCSs, especially on measured data from target models which have similar features to the synthetic training data. The contributions of this thesis work are firstly a convolutional neural network that enhances ISAR images affected by spectral leakage. The neural network handles complex-valued signals as a single channel and does not perform any rescaling of the input. Secondly, it is shown that it is sufficient to calculate the new RCS for much fewer frequency samples and angular positions and compare those measurements to the corresponding frequency samples and angular positions in the original RCS to train the neural network.
|
8 |
Deep Learning for Compressive SAR Imaging with Train-Test DiscrepancyMcCamey, Morgan R. 21 June 2021 (has links)
No description available.
|
Page generated in 0.0475 seconds