21 |
Using agent-based modeling to examine the logistical chain of the seabaseMilton, Rebecca M. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis examines a 2015 Marine Expeditionary Brigade scheme of maneuver as the baseline scenario for a commercial logistics support software program called SEAWAY. Modifications to this scenario are conducted using a designed experiment in order to explore how the plan characteristics relate to eleven specified input factors. Multiple regression analysis is used to fit models to the resulting data for three different measures of performance: Total Aircraft Sorties, Total Aircraft Sortie Time and Total Aircraft Tons. The results suggest the plan performance is predicted well by a small subset of the factors and their interactions. One implication of this work is a better understanding of which factors are key determinants of the plan characteristics for variations on this specific base scenario. By using these fitted models, the number of SEAWAY runs needed to identify acceptable plans should decrease dramatically. The approach in this thesis provides a blueprint for similar analyses of other scenarios by demonstrating how information gained from models fit during an exploration phase might allow the logistician to quickly determine factor settings that yield an acceptable plan once details of an operation become available. Finally, working with the SEAWAY developers provided them with some new insights. / Lieutenant Commandeer, United States Navy
|
22 |
Paleo-Environmental Interpretations and Weathering Effects of the Mowry Shale from Geochemical Analysis of Outcrop Samples in the Western Margin of the Wind River Basin near Lander, WyomingTuttle, Trevor Robinson 01 March 2018 (has links)
The Cretaceous Mowry Shale is an organic-rich, siliceous marine shale, and as such is a known source rock in the Western United States. Studies have documented that total organic carbon (TOC) in the Wind River Basin, Wyoming increases to the southeast. These studies cover large areas with limited sample sets. In this study, over 250 samples were collected near Lander, Wyoming to address spatial heterogeneity of TOC within the Mowry Shale at a much finer scale than previously examined. Samples were collected along five vertical sections at three localities, and following correlation of the vertical sections, which was strongly aided by the presence of regional bentonite horizons, samples were collected laterally from the same unit at regular 25-foot intervals. These samples were analyzed using pyrolysis and x-ray diffraction techniques. Average TOC values are fairly consistent within the study area (1.65%, with a range of 2.10% to 1.15%). Average Tmax values for vertical and lateral samples is 433 °C with a standard deviation of 7.25 °C suggesting immature to very early oil window thermal maturity. Kerogen types are determined to be dominantly type III, suggesting a dominance of terrestrial input, becoming slightly more mixed type II/III to the southeast. Redox-sensitive trace metals such as uranium, thorium, vanadium, chromium, cobalt, and molybdenum values all suggest a slightly oxygenated sediment water interface during time of deposition. These pyrolysis and trace metal data suggest that the study area was in a prograding proximal marine/prodeltaic depositional environment during Upper Mowry time with influences from higher energy bottom flows. Lateral homogeneity of strata and the low variability in geochemical character across the study area suggest that the local basin in the study area was not segmented by structural or oceanographic conditions. While efforts were made to collect unaltered outcrop samples (digging back into what appeared to be unfractured, unaltered rock), alteration or weathering of organic material is a concern for source rock evaluation of near-surface outcrops. In order to address this concern, a 5-foot-deep trench was dug back into the outcrop at the target horizon in one locality. Samples were taken at regular three-inch intervals from this trench as it was excavated to determine the effect of weathering on TOC in the study area. Based on pyrolysis results, TOC was affected by weathering only along fracture sets (several samples intersected fractures in the shallow subsurface) and did not appreciably increase from the surface to a depth of five feet. Due to the impermeable nature of shale rock, decreases of TOC due to weathering appear to be limited to the immediate surface of samples and along fracture sets.
|
23 |
To the Heart of the Continent: Canada and the Negotiation of the St. Lawrence Seaway and Power Project, 1921-1954Macfarlane, Daniel W. D. 04 January 2011 (has links)
The St. Lawrence Seaway and Power Project, built cooperatively between 1954 and 1959 by Canada and the United States, is the largest navigable inland waterway in the world and the largest borderlands project ever undertaken jointly by two countries. This thesis combines diplomatic, political, and environmental history to chart the course of domestic and international negotiations, particularly in the 1945-1954 period, that resulted in the bilateral 1954 agreement to build the seaway. The focus is on the Canadian federal government and to a lesser extent the U.S. federal government, as well as involved state and provincial governments and their public power utilities. These negotiations are extremely revealing in terms of the history of Canadian-American relations, and this thesis also examines issues connected to North American attitudes toward water resources, state-building, high modernism, and technology in the early Cold War period.
After a number of failed attempts at a cooperative waterway, in the late 1940s the Liberal government of Louis St. Laurent began to explore the possibility of an all-Canadian seaway, and backed by widespread public support, had adopted this as policy by 1952. The drive for an all-Canadian seaway stemmed from various forms of nationalism which framed the St. Lawrence as an exclusively “Canadian” resource that was intimately tied to Canadian identity. However, the Truman administration and different American interests deemed a unilateral Canadian waterway to be an economic and national security threat to the United States, and delayed the requisite power licenses needed for Canada to undertake the transborder St. Lawrence project. Canada partly contributed to this situation by repeatedly making vague offers to leave the door open for American involvement in the hopes that this would expedite the hydro aspect of the project. The Eisenhower administration also stalled Ottawa’s efforts to “go it alone” until American participation was finally sanctioned by Congress in 1954 and the requisite licenses were granted. The St. Laurent government then reluctantly acquiesced to the American desire for a joint endeavour in order to maintain harmonious Canada-U.S. relations, although Canada did extract key concessions from Washington about the shape and placement of the project.
|
24 |
To the Heart of the Continent: Canada and the Negotiation of the St. Lawrence Seaway and Power Project, 1921-1954Macfarlane, Daniel W. D. 04 January 2011 (has links)
The St. Lawrence Seaway and Power Project, built cooperatively between 1954 and 1959 by Canada and the United States, is the largest navigable inland waterway in the world and the largest borderlands project ever undertaken jointly by two countries. This thesis combines diplomatic, political, and environmental history to chart the course of domestic and international negotiations, particularly in the 1945-1954 period, that resulted in the bilateral 1954 agreement to build the seaway. The focus is on the Canadian federal government and to a lesser extent the U.S. federal government, as well as involved state and provincial governments and their public power utilities. These negotiations are extremely revealing in terms of the history of Canadian-American relations, and this thesis also examines issues connected to North American attitudes toward water resources, state-building, high modernism, and technology in the early Cold War period.
After a number of failed attempts at a cooperative waterway, in the late 1940s the Liberal government of Louis St. Laurent began to explore the possibility of an all-Canadian seaway, and backed by widespread public support, had adopted this as policy by 1952. The drive for an all-Canadian seaway stemmed from various forms of nationalism which framed the St. Lawrence as an exclusively “Canadian” resource that was intimately tied to Canadian identity. However, the Truman administration and different American interests deemed a unilateral Canadian waterway to be an economic and national security threat to the United States, and delayed the requisite power licenses needed for Canada to undertake the transborder St. Lawrence project. Canada partly contributed to this situation by repeatedly making vague offers to leave the door open for American involvement in the hopes that this would expedite the hydro aspect of the project. The Eisenhower administration also stalled Ottawa’s efforts to “go it alone” until American participation was finally sanctioned by Congress in 1954 and the requisite licenses were granted. The St. Laurent government then reluctantly acquiesced to the American desire for a joint endeavour in order to maintain harmonious Canada-U.S. relations, although Canada did extract key concessions from Washington about the shape and placement of the project.
|
25 |
To the Heart of the Continent: Canada and the Negotiation of the St. Lawrence Seaway and Power Project, 1921-1954Macfarlane, Daniel W. D. 04 January 2011 (has links)
The St. Lawrence Seaway and Power Project, built cooperatively between 1954 and 1959 by Canada and the United States, is the largest navigable inland waterway in the world and the largest borderlands project ever undertaken jointly by two countries. This thesis combines diplomatic, political, and environmental history to chart the course of domestic and international negotiations, particularly in the 1945-1954 period, that resulted in the bilateral 1954 agreement to build the seaway. The focus is on the Canadian federal government and to a lesser extent the U.S. federal government, as well as involved state and provincial governments and their public power utilities. These negotiations are extremely revealing in terms of the history of Canadian-American relations, and this thesis also examines issues connected to North American attitudes toward water resources, state-building, high modernism, and technology in the early Cold War period.
After a number of failed attempts at a cooperative waterway, in the late 1940s the Liberal government of Louis St. Laurent began to explore the possibility of an all-Canadian seaway, and backed by widespread public support, had adopted this as policy by 1952. The drive for an all-Canadian seaway stemmed from various forms of nationalism which framed the St. Lawrence as an exclusively “Canadian” resource that was intimately tied to Canadian identity. However, the Truman administration and different American interests deemed a unilateral Canadian waterway to be an economic and national security threat to the United States, and delayed the requisite power licenses needed for Canada to undertake the transborder St. Lawrence project. Canada partly contributed to this situation by repeatedly making vague offers to leave the door open for American involvement in the hopes that this would expedite the hydro aspect of the project. The Eisenhower administration also stalled Ottawa’s efforts to “go it alone” until American participation was finally sanctioned by Congress in 1954 and the requisite licenses were granted. The St. Laurent government then reluctantly acquiesced to the American desire for a joint endeavour in order to maintain harmonious Canada-U.S. relations, although Canada did extract key concessions from Washington about the shape and placement of the project.
|
26 |
To the Heart of the Continent: Canada and the Negotiation of the St. Lawrence Seaway and Power Project, 1921-1954Macfarlane, Daniel W. D. January 2010 (has links)
The St. Lawrence Seaway and Power Project, built cooperatively between 1954 and 1959 by Canada and the United States, is the largest navigable inland waterway in the world and the largest borderlands project ever undertaken jointly by two countries. This thesis combines diplomatic, political, and environmental history to chart the course of domestic and international negotiations, particularly in the 1945-1954 period, that resulted in the bilateral 1954 agreement to build the seaway. The focus is on the Canadian federal government and to a lesser extent the U.S. federal government, as well as involved state and provincial governments and their public power utilities. These negotiations are extremely revealing in terms of the history of Canadian-American relations, and this thesis also examines issues connected to North American attitudes toward water resources, state-building, high modernism, and technology in the early Cold War period.
After a number of failed attempts at a cooperative waterway, in the late 1940s the Liberal government of Louis St. Laurent began to explore the possibility of an all-Canadian seaway, and backed by widespread public support, had adopted this as policy by 1952. The drive for an all-Canadian seaway stemmed from various forms of nationalism which framed the St. Lawrence as an exclusively “Canadian” resource that was intimately tied to Canadian identity. However, the Truman administration and different American interests deemed a unilateral Canadian waterway to be an economic and national security threat to the United States, and delayed the requisite power licenses needed for Canada to undertake the transborder St. Lawrence project. Canada partly contributed to this situation by repeatedly making vague offers to leave the door open for American involvement in the hopes that this would expedite the hydro aspect of the project. The Eisenhower administration also stalled Ottawa’s efforts to “go it alone” until American participation was finally sanctioned by Congress in 1954 and the requisite licenses were granted. The St. Laurent government then reluctantly acquiesced to the American desire for a joint endeavour in order to maintain harmonious Canada-U.S. relations, although Canada did extract key concessions from Washington about the shape and placement of the project.
|
27 |
The Hydrostatics and Hydrodynamics of Prominent Heteromorph Ammonoid Morphotypes and the Functional Morphology of Ammonitic SeptaPeterman, David Joseph 21 May 2020 (has links)
No description available.
|
28 |
Characterizing the Low Net-to-Gross, Fluviodeltaic Dry Hollow Member of the Frontier Formation, Western Green River Basin, WyomingMeek, Scott Romney 01 August 2017 (has links)
The Frontier Formation in the Green River Basin of southwestern Wyoming consists of Late Cretaceous (Cenomanian-Turonian) marine and non-marine sandstones, siltstones, mudstones and coals deposited on the western margin of the Cretaceous Interior Seaway. Tight gas reservoirs exist in subsurface fluviodeltaic sandstones in the upper Frontier Formation (Dry Hollow Member) on the north-south trending Moxa Arch within the basin. These strata crop out in hogback ridges of the Utah-Idaho-Wyoming Thrust Belt approximately 40 km west of the crest of the Moxa Arch. Detailed, quantitative outcrop descriptions were constructed using emerging photogrammetric techniques along with field observations and measured sections at five key outcrop localities along the thrust belt. Understanding the architectural style of this low net-to-gross fluvial system allows for improved reservoir prediction in this and other comparable basins. The architectural style of the Dry Hollow Member fluvial deposits varies vertically as the result of a relative shoreline transgression during Dry Hollow deposition. Amalgamated conglomerates and associated fine to coarse sandstones near the base of the section and much thinner, isolated sandstones near the top of the Dry Hollow occur in laterally extensive units that can be identified over tens of kilometers. These units also provide means to relate outcrop and subsurface stratigraphic architecture. Combined with available subsurface data, fully-realized 3D static reservoir models for use as analogs in subsurface reservoir characterization may be constructed. Grain size, reservoir thickness and connectivity of fluvial sandstones is generally greatest near the base of this member and decreases upward overall. Despite relative isolation of some channel bodies, geocellular facies modeling indicates good lateral and vertical connectivity of most channel sandstones. The Kemmerer Coal Zone, with little sandstone, divides lower and upper well-connected sandy units.
|
29 |
Comprendre l’évolution de la cryosphère et du climat du Pliocène à la transition Plio-Pléistocène / Understanding the cryosphere and climate evolution from Pliocene to Plio-Pleistocene transitionTan, Ning 25 April 2018 (has links)
Cette thèse est consacrée à l’étude de l’interaction cryosphère-climat depuis le milieu du Pliocène jusqu’au quaternaire pendant l’installation pérenne de la calotte groenlandaise. Nous étudions d’abord les causes du développement et de la disparition de l’importante mais courte glaciation qui a eu lieu pendant le stade isotopique marin M2 (MIS M23.264-¬3.312 Ma). Ensuite, dans le cadre du programme international sur la modélisation du Pliocène (PLIOMIP2), nous étudions le climat de la période chaude du Plaisancien moyen(MPWP, 3.3-3.0Ma). Enfin, la troisième période étudiée est la transition Plio-Pléistocène transition (PPT, 3.0-2.5Ma), que nous avons étudiée grâce à un couplage asynchrone entre un modèle de climat et un modèle de calotte. A travers ces différentes périodes, nous avons amélioré la connaissance des relations entrepCO2, tectonique et climat pendant la transition d’un monde chaud et riche en CO2 vers le monde bien plus froid et à faible pCO2 des glaciations quaternaires. Ce résultat montre l’importance de mieux comprendre les relations entre dynamique océanique, pCO2 et climat. / This thesis is devoted tounderstanding the interaction betweencryosphere and climate from the mid Plioceneto the early Quaternary during the onset ofNorthern Hemisphere Glaciation (NHG).Firstly, we investigate the causes for thedevelopment and decay of the large but shortliving glaciation that occurred during MarineIsotope Stage 2 (M2, 3.264-¬3.312 Ma);Secondly, in the framework of the internationalPliocene Model Intercomparison Project(PLIOMIP2), we study the climate of Mid-Piacenzian Warm Period (MPWP, 3.3-3.0Ma).Thirdly, we explore the Plio-PleistoceneTransition (PPT, 3.0-2.5Ma) with anappropriate asynchronously coupled climatecryosphere model. Through these differentperiods, we provide a better understanding ofthe relationship between pCO2, tectonics andclimat during the transition from a warm andhigh-CO2 world to the cold and low-CO2Quaternary glaciations. This work also pointsout the necessity to further study the linkbetween ocean dynamics, carbon cycle andclimate.
|
30 |
Fluvial Architecture and Reservoir Modeling Along the Strike Direction of the Trail Member of the Ericson Sandstone, Mesaverde Group in Southwest WyomingTrevino, April Anahi 01 July 2019 (has links)
The Trail Member of the upper Cretaceous Ericson Sandstone, part of the Mesaverde Group, is exposed along hundreds of square kilometers through Wyoming along the flanks of several Laramide structural uplifts. This presents a unique opportunity to study the detailed architecture based on bed-scale heterogeneity and better assess the reservoir potential of these strata in outcrop exposure on a regional-scale, and to then relate these observations to producing fields nearby. The fluvial-dominated Trail Member formed as sediments traveled from the active Sevier thrust belt to the Cretaceous Interior Seaway, forming a basinward progradational clastic wedge along a relatively high gradient. The high energy, tectonically active setting led to preservation of sand-rich, often compositionally immature fluvial strata. Though there is an abundance of sand-rich strata in the Trail Member, production from this interval has been unpredictable in current and past fields such as the Trail Unit of southwestern Wyoming.Twelve detailed stratigraphic columns were described at three sites along the eastern flank of the Rock Springs Uplift to show facies heterogeneity beyond what is often available through wells, 69 hand samples were collected for determination of porosity and permeability, and photogrammetric characterization was performed at the three sites. Average porosity decreases along strike from north to south along with net-to-gross. The vertical changes in fluvial architecture within the Trail Member reflect changes in available accommodation. While thickness of the Trail Member is highly variable, ranging between 79 to 108 meters across the study area, there is an overall trend of thickening to the south. Although the character of the Trail strata changes appreciably along strike direction, this interval is consistently rich in sand, and grain size does not change drastically along the length of observed outcrops. This study demonstrated that spatial variability in the thickness, local accommodation, porosity, and net-to-gross of the Trail Member, as well as temporal variability in the amount and character of reservoir sands and channel stacking patterns play an important role in the unpredictability of this reservoir. This study will enable reservoir modeling and aid in future exploration projects within the Trail Member and other comparable systems with similar fluvial architecture and internal heterogeneity.
|
Page generated in 0.0276 seconds