1 |
SPEA2-based safety system multi-objective optimizationRiauke, Jelena January 2009 (has links)
Safety systems are designed to prevent the occurrence of certain conditions and their future development into a hazardous situation. The consequence of the failure of a safety system of a potentially hazardous industrial system or process varies from minor inconvenience and cost to personal injury, significant economic loss and death. To minimise the likelihood of a hazardous situation, safety systems must be designed to maximise their availability. Therefore, the purpose of this thesis is to propose an effective safety system design optimization scheme. A multi-objective genetic algorithm has been adopted, where the criteria catered for includes unavailability, cost, spurious trip and maintenance down time. Analyses of individual system designs are carried out using the latest advantages of the fault tree analysis technique and the binary decision diagram approach (BDD). The improved strength Pareto evolutionary approach (SPEA2) is chosen to perform the system optimization resulting in the final design specifications. The practicality of the developed approach is demonstrated initially through application to a High Integrity Protection System (HIPS) and subsequently to test scalability using the more complex Firewater Deluge System (FDS). Computer code has been developed to carry out the analysis. The results for both systems are compared to those using a single objective optimization approach (GASSOP) and exhaustive search. The overall conclusions show a number of benefits of the SPEA2 based technique application to the safety system design optimization. It is common for safety systems to feature dependency relationships between its components. To enable the use of the fault tree analysis technique and the BDD approach for such systems, the Markov method is incorporated into the optimization process. The main types of dependency which can exist between the safety system component failures are identified. The Markov model generation algorithms are suggested for each type of dependency. The modified optimization tool is tested on the HIPS and FDS. Results comparison shows the benefit of using the modified technique for safety system optimization. Finally the effectiveness and application to general safety systems is discussed.
|
2 |
An Interactive Preference Based Multiobjective Evolutionary Algorithm For The Clustering ProblemDemirtas, Kerem 01 May 2011 (has links) (PDF)
We propose an interactive preference-based evolutionary algorithm for the clustering problem. The problem is highly combinatorial and referred to as NP-Hard in the literature. The goal of the problem is putting similar items in the same cluster and dissimilar items into different clusters according to a certain similarity measure, while maintaining some internal objectives such as compactness, connectivity or spatial separation. However, using one of these objectives is often not sufficient to detect different underlying structures in different data sets with clusters having arbitrary shapes and density variations. Thus, the current trend in the clustering literature is growing into the use of multiple objectives as the inadequacy of using a single objective is understood better. The problem is also difficult because the optimal solution is not well defined. To the best of our knowledge, all the multiobjective evolutionary algorithms for the clustering problem try to generate the whole Pareto optimal set. This may not be very useful since majority of the solutions in this set may be uninteresting when presented to the decision maker. In this study, we incorporate the preferences of the decision maker into a well known multiobjective evolutionary algorithm, namely SPEA-2, in the optimization process using reference points and achievement scalarizing functions to find the target clusters.
|
3 |
Metamodel based multi-objective optimizationAmouzgar, Kaveh January 2015 (has links)
As a result of the increase in accessibility of computational resources and the increase in the power of the computers during the last two decades, designers are able to create computer models to simulate the behavior of a complex products. To address global competitiveness, companies are forced to optimize their designs and products. Optimizing the design needs several runs of computationally expensive simulation models. Therefore, using metamodels as an efficient and sufficiently accurate approximate of the simulation model is necessary. Radial basis functions (RBF) is one of the several metamodeling methods that can be found in the literature. The established approach is to add a bias to RBF in order to obtain a robust performance. The a posteriori bias is considered to be unknown at the beginning and it is defined by imposing extra orthogonality constraints. In this thesis, a new approach in constructing RBF with the bias to be set a priori by using the normal equation is proposed. The performance of the suggested approach is compared to the classic RBF with a posteriori bias. Another comprehensive comparison study by including several modeling criteria, such as problem dimension, sampling technique and size of samples is conducted. The studies demonstrate that the suggested approach with a priori bias is in general as good as the performance of RBF with a posteriori bias. Using the a priori RBF, it is clear that the global response is modeled with the bias and that the details are captured with radial basis functions. Multi-objective optimization and the approaches used in solving such problems are briefly described in this thesis. One of the methods that proved to be efficient in solving multi-objective optimization problems (MOOP) is the strength Pareto evolutionary algorithm (SPEA2). Multi-objective optimization of a disc brake system of a heavy truck by using SPEA2 and RBF with a priori bias is performed. As a result, the possibility to reduce the weight of the system without extensive compromise in other objectives is found. Multi-objective optimization of material model parameters of an adhesive layer with the aim of improving the results of a previous study is implemented. The result of the original study is improved and a clear insight into the nature of the problem is revealed.
|
4 |
Developing Risk-Minimizing Vehicle Routing Problem for Transportation of Valuables: Models and AlgorithmsFallahtafti, Alireza 10 September 2021 (has links)
No description available.
|
Page generated in 0.0144 seconds