• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 339
  • 168
  • 97
  • 54
  • 34
  • 32
  • 13
  • 11
  • 9
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 942
  • 159
  • 85
  • 60
  • 59
  • 58
  • 54
  • 52
  • 49
  • 49
  • 48
  • 44
  • 43
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Approaching Revolution in the Middle East and the Current Media Landscape : Social Media- and News Agency Material in reporting of the Arab Spring and War in Syria

Hessel, Hampus January 2014 (has links)
The Arab spring has been called a social media revolution and social media have been given large importance and significant space in both academic discussions and analysis in the media. The main focus of this study was to examine whether social media have impacted the news reporting of the conflicts. A sample of articles from four different newspapers was examined, taken randomly from all relevant articles published on the newspapers websites between December 2010 and December 2013. A part of that sample was checked for news agency cable reliance and the entire sample were checked for material from social media. Three newspapers were found to rely heavily on news agency material. The New York Times was the exception, having only 4 percent of articles being based on news agency material. Social media material and quotes were found and were used in the report-ing in different ways, but only in 4 percent of articles. It was mainly used as a way to get protester commentary. Two of the included newspapers were China Daily and the New York Times. The differences between the respective reporting in these newspapers were also examined in yet an-other subsample consisting of 100 articles from each newspaper. Several differences be-tween the reporting were found, with China Daily for example presenting a framing more in favour of the government of Syria than the New York Times.
322

Novel Semi-Active Suspension with Tunable Stiffness and Damping Characteristics

Wong, Adrian Louis Kuo-Tian January 2012 (has links)
For the past several decades there have been many attempts to improve suspension performance due to its importance within vehicle dynamics. The suspension system main functions are to connect the chassis to the ground, and to isolate the chassis from the ground. To improve upon these two functions, large amounts of effort are focused on two elements that form the building blocks of the suspension system, stiffness and damping. With the advent of new technologies, such as variable dampers, and powerful microprocessors and sensors, suspension performance can be enhanced beyond the traditional capabilities of a passive suspension system. Recently, Yin et al. [1, 2] have developed a novel dual chamber pneumatic spring that can provide tunable stiffness characteristics, which is rare compared to the sea of tunable dampers. The purpose of this thesis is to develop a controller to take advantage of the novel pneumatic spring’s functionality with a tunable damper to improve vehicle dynamic performance. Since the pneumatic spring is a slow-acting element (i.e. low bandwidth), the typical control logic for semi-active suspension systems are not practical for this framework. Most semi-active controllers assume the use of fast-acting (i.e. high bandwidth) variable dampers within the suspension design. In this case, a lookup table controller is used to manage the stiffness and damping properties for a wide range of operating conditions. To determine the optimum stiffness and damping properties, optimization is employed. Four objective functions are used to quantify vehicle performance; ride comfort, rattle space (i.e. suspension deflection), handling (i.e. tire deflection), and undamped sprung mass natural frequency. The goal is to minimize the first three objectives, while maximizing the latter to avoid motion sickness starting from 1Hz and downward. However, these goals cannot be attained simultaneously, necessitating compromises between them. Using the optimization strength of genetic algorithms, a Pareto optima set can be generated to determine the compromises between objective functions that have been normalized. Using a trade-off study, the stiffness and damping properties can be selected from the Pareto optima set for suitability within an operating condition of the control logic. When implementing the lookup table controller, a practical method is employed to recognize the road profile as there is no direct method to determine road profile. To determine the road profile for the lookup table controller, the unsprung mass RMS acceleration and suspension state are utilized. To alleviate the inherent flip-flopping drawback of lookup table controllers, a temporal deadband is employed to eliminate the flip-flopping of the lookup table controller. Results from the semi-active suspension with tunable stiffness and damping show that vehicle performance, depending on road roughness and vehicle speed, can improve up to 18% over passive suspension systems. Since the controller does not constantly adjust the damping properties, cost and reliability may increase over traditional semi-active suspension systems. The flip-flopping drawback of lookup table controllers has been reduced through the use of a temporal deadband, however further enhancement is required to eliminate flip-flopping within the control logic. Looking forward, the novel semi-active suspension has great potential to improve vehicle dynamic performance especially for heavy vehicles that have large sprung mass variation, but to increase robustness the following should be considered: better road profile recognition, the elimination of flip-flopping between suspension states, and using state equations model of the pneumatic spring within the vehicle model for optimization and evaluation.
323

Hydrological Controls on Mercury Mobility and Transport from a Forested Hillslope during Spring Snowmelt

Haynes, Kristine 20 November 2012 (has links)
Upland environments are important sources of mercury (Hg) to downstream wetlands and water bodies. Hydrology is instrumental in facilitating Hg transport within, and export from watersheds. Two complementary studies were conducted to assess the role hydrological processes play in controlling Hg mobility and transport in forested uplands. A field study compared runoff and Hg fluxes from three, replicate hillslope plots during two contrasting spring snowmelt periods, in terms of snowpack depth and timing. Hillslope Hg fluxes were predominately flow-driven. The melting of soil frost significantly delayed a large portion of the Hg flux later into the spring following a winter with minimal snow accumulation. A microcosm laboratory study using a stable Hg isotope tracer applied to intact soil cores investigated the relative controls of soil moisture and precipitation on Hg mobility. Both hydrologic factors control the mobility of contemporary Hg; with greatest Hg flushing from dry soils under high-flow conditions.
324

Force and impulse control for spring-mass running

Koepl, Devin N. 02 December 2011 (has links)
We present a novel control strategy for running which is robust to disturbances, and makes excellent use of passive dynamics for energy economy. The motivation for our control strategy is based on observations of animals, which are able to economically walk and run over varying terrain and ground dynamics. It is well-known that steady-state animal running can be approximated by spring-mass models, but these passive dynamic models describe only steady-state running and are sensitive to disturbances that animals can accommodate. While animals rely on their passive dynamics for energy economy, they also incorporate active control for disturbance rejection. The same approach can be used for spring-mass walking and running, but an active controller is needed that interferes minimally with the passive dynamics of the system. We demonstrate, in simulation, how force control combined with a leg spring stiffness tuned for the desired hopping frequency provides robustness to disturbances on a model for robot hopping, while maintaining the energy economy of a completely passive system during steady-state operation. Our strategy is promising for robotics applications, because there is a clear distinction between the passive dynamic behavior of the model and the active controller, it does not require sensing of the environment, and it is based on a sound theoretical background that is compatible with existing high-level controllers for ideal spring-mass models. / Graduation date: 2012
325

不連続ばね特性を利用した回転機械の制振

石田, 幸男, ISHIDA, Yukio, 劉, 軍, LIU, Jun 08 1900 (has links)
No description available.
326

不連続ばね特性を利用した回転機械の不安定領域の除去

石田, 幸男, ISHIDA, Yukio, 劉, 軍, LIU, Jun 03 1900 (has links)
No description available.
327

Novel Semi-Active Suspension with Tunable Stiffness and Damping Characteristics

Wong, Adrian Louis Kuo-Tian January 2012 (has links)
For the past several decades there have been many attempts to improve suspension performance due to its importance within vehicle dynamics. The suspension system main functions are to connect the chassis to the ground, and to isolate the chassis from the ground. To improve upon these two functions, large amounts of effort are focused on two elements that form the building blocks of the suspension system, stiffness and damping. With the advent of new technologies, such as variable dampers, and powerful microprocessors and sensors, suspension performance can be enhanced beyond the traditional capabilities of a passive suspension system. Recently, Yin et al. [1, 2] have developed a novel dual chamber pneumatic spring that can provide tunable stiffness characteristics, which is rare compared to the sea of tunable dampers. The purpose of this thesis is to develop a controller to take advantage of the novel pneumatic spring’s functionality with a tunable damper to improve vehicle dynamic performance. Since the pneumatic spring is a slow-acting element (i.e. low bandwidth), the typical control logic for semi-active suspension systems are not practical for this framework. Most semi-active controllers assume the use of fast-acting (i.e. high bandwidth) variable dampers within the suspension design. In this case, a lookup table controller is used to manage the stiffness and damping properties for a wide range of operating conditions. To determine the optimum stiffness and damping properties, optimization is employed. Four objective functions are used to quantify vehicle performance; ride comfort, rattle space (i.e. suspension deflection), handling (i.e. tire deflection), and undamped sprung mass natural frequency. The goal is to minimize the first three objectives, while maximizing the latter to avoid motion sickness starting from 1Hz and downward. However, these goals cannot be attained simultaneously, necessitating compromises between them. Using the optimization strength of genetic algorithms, a Pareto optima set can be generated to determine the compromises between objective functions that have been normalized. Using a trade-off study, the stiffness and damping properties can be selected from the Pareto optima set for suitability within an operating condition of the control logic. When implementing the lookup table controller, a practical method is employed to recognize the road profile as there is no direct method to determine road profile. To determine the road profile for the lookup table controller, the unsprung mass RMS acceleration and suspension state are utilized. To alleviate the inherent flip-flopping drawback of lookup table controllers, a temporal deadband is employed to eliminate the flip-flopping of the lookup table controller. Results from the semi-active suspension with tunable stiffness and damping show that vehicle performance, depending on road roughness and vehicle speed, can improve up to 18% over passive suspension systems. Since the controller does not constantly adjust the damping properties, cost and reliability may increase over traditional semi-active suspension systems. The flip-flopping drawback of lookup table controllers has been reduced through the use of a temporal deadband, however further enhancement is required to eliminate flip-flopping within the control logic. Looking forward, the novel semi-active suspension has great potential to improve vehicle dynamic performance especially for heavy vehicles that have large sprung mass variation, but to increase robustness the following should be considered: better road profile recognition, the elimination of flip-flopping between suspension states, and using state equations model of the pneumatic spring within the vehicle model for optimization and evaluation.
328

Linking landscape characteristics, streamwater acidity and brown trout (Salmo trutta) distributions in a boreal stream network /

Buffam, Ishi, January 2007 (has links) (PDF)
Diss. (sammanfattning) Umeå : Sveriges lantbruksuniv., 2007. / Härtill 4 uppsatser.
329

Praying with hands and hearts and voices enriching and expanding the individual prayer lives of members of St Peter's (Lischey's) United Church of Christ, Spring Grove, Pennsylvania using Howard Gardner's multiple intelligences and the participants' individual artistic abilities /

Grahe, W. Arthur. January 2006 (has links)
Thesis (D. Min.)--Northern Baptist Theological Seminary, 2006. / Abstract. Includes bibliographical references (leaves 230-237).
330

Shaping blended worship at Spring Valley Baptist Church in Columbia, South Carolina

McCollum, Rick. January 2000 (has links)
Thesis (D. Min.)--Northern Baptist Theological Seminary, 2000. / Abstract. Includes bibliographical references (leaves 172-178).

Page generated in 0.0329 seconds