• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 9
  • 2
  • 2
  • 1
  • Tagged with
  • 62
  • 43
  • 23
  • 20
  • 19
  • 18
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

STED Microscopy with Scanning Fields Below the Diffraction Limit

Göttfert, Fabian 01 December 2015 (has links)
No description available.
22

isoSTED microscopy for live cell imaging

Siegmund, René 22 February 2019 (has links)
No description available.
23

Nanoscale rearrangements in cortical actin filaments at lytic immunological synapses

Saeed, Mezida Bedru January 2018 (has links)
Lytic effector function of Natural Killer (NK) cells and CD8+ T cells occurs through discrete and regulated cell biological steps triggered by recognition of diseased cells. Recent studies of the NK cell synapse support the idea that dynamic nanoscale rearrangements in cortical filamentous (F)-actin are a critical cell biological checkpoint for lytic granule access to NK cell membrane. Loss of function mutations in the LYST gene, a well-characterised cause of Chediak- Hegashi syndrome (CHS), result in the formation of giant lysosomal organelles including lytic granules. Here, we report a mismatch between the extent of cortical F-actin remodelling and enlarged lytic granules that limits the functionality of LYST- deficient NK cells in a human model of CHS. Using super-resolution stimulated emission depletion (STED) microscopy we found that LYST-deficient NK cells had nanoscale rearrangements in the organisation of cortical actin filaments that were indistinguishable from control cells- despite a 2.5-fold increase in the size of polarised granules. Importantly, treatment of LYST-deficient NK cells with actin depolymerising drugs increased the formation of small secretory domains at the synapse and restored their ability to lyse target cells. These data establish that sub-synaptic F-actin is the major factor limiting the release of enlarged lytic granules from CHS NK cells, and reveal a novel target for therapeutic interventions. While the importance of cortical actin filaments in NK cell cytotoxicity have been established, its persistence at the early stages of T cell synapse formation is disputed. We studied the organisation of cortical actin filaments in synapses formed by primary human T cells using STED microscopy and detected intact cortical actin filaments in key T cell effector subsets including memory CD8+ T cells as early as 5-minutes post-activation. Quantitative analysis revealed that activation specific rearrangements in cortical actin filaments at both CD4+ and CD8+ T cell synapses serve to increase the space between filaments. Additionally, comparison of cytolytic T cells with freshly isolated and IL-2 activated primary NK cells revealed that rapid maturation of the cortical actin meshwork is a specific feature of CD8+ T cell lytic synapses. Using chemical inhibition of actin nucleators, we show that increased cortical relaxation is mediated primarily by the activity of actin related proteins (Arp) -2/3. Taken together, these data establish the critical requirement for dynamic rearrangements in cortical actin filaments at lytic synapses but underscore cell-specific differences in its regulation.
24

Statistical analysis methods for time varying nanoscale imaging problems

Laitenberger, Oskar 29 June 2018 (has links)
No description available.
25

Stimulated emission depletion microscopy with optical fibers

Yan, Lu 10 March 2017 (has links)
Imaging at the nanoscale and/or at remote locations holds great promise for studies in fields as disparate as the life sciences and materials sciences. One such microscopy technique, stimulated emission depletion (STED) microscopy, is one of several fluorescence based imaging techniques that offers resolution beyond the diffraction-limit. All current implementations of STED microscopy, however, involve the use of free-space beam shaping devices to achieve the Gaussian- and donut-shaped Orbital Angular Momentum (OAM) carrying beams at the desired colors –-- a challenging prospect from the standpoint of device assembly and mechanical stability during operation. A fiber-based solution could address these engineering challenges, and perhaps more interestingly, it may facilitate endoscopic implementation of in vivo STED imaging, a prospect that has thus far not been realized because optical fibers were previously considered to be incapable of transmitting the OAM beams that are necessary for STED. In this thesis, we investigate fiber-based STED systems to enable endoscopic nanoscale imaging. We discuss the design and characteristics of a novel class of fibers supporting and stably propagating Gaussian and OAM modes. Optimization of the design parameters leads to stable excitation and depletion beams propagating in the same fiber in the visible spectral range, for the first time, with high efficiency (>99%) and mode purity (>98%). Using the fabricated vortex fiber, we demonstrate an all-fiber STED system with modes that are tolerant to perturbations, and we obtain naturally self-aligned PSFs for the excitation and depletion beams. Initial experiments of STED imaging using our device yields a 4-fold improvement in lateral resolution compared to confocal imaging. In an experiment in parallel, we show the means of using q-plates as free-space mode converters that yield alignment tolerant STED microscopy systems at wavelengths covering the entire visible spectrum, and hence dyes of interest in such imaging schematics. Our study indicates that the vortex fiber is capable of providing an all-fiber platform for STED systems, and for other imaging systems where the exploitation of spatio-spectral beam shaping is required.
26

Etude d'un continuum de lumière en régime femtoseconde. Applications au domaine biologique : microscopies et spectroscopie en temps résolu.

Courvoisier, Céline 03 July 2006 (has links) (PDF)
Le but de cette thèse est de caractériser un continuum généré en régime femtoseconde dans une fibre microstructurée (puissance spectrale, durée des pulses, fluctuations tir à tir) et de valider son utilisation comme source optique dans des instrumentations dédiées aux domaines biologique et clinique.<br />La première application est l'élaboration d'un microscope confocal de fluorescence entièrement versatile en longueur d'onde : le continuum, filtré par un cristal acousto-optique, est ainsi utilisé comme une source accordable permettant l'excitation de n'importe quel fluorophore. Des images de cellules identifiées par différents marqueurs ont été réalisées.<br />Afin de disposer d'un outil alliant une grande versatilité spectrale à une très haute résolution spatiale, le dispositif précédent a été modifié en un microscope STED. Notre continuum est trop peu énergétique pour apporter une validation expérimentale, mais des simulations numériques prenant en compte les fluctuations du continuum permettent d'estimer que la résolution latérale peut atteindre 90 nm, voire 35 nm pour les pulses les plus puissants.<br />La troisième application est l'utilisation du continuum en tant que source large bande pulsée pour une expérience de spectroscopie de temps de vol dans les milieux diffusants tels le muscle, l'os, la moelle osseuse. Grâce à un modèle adapté de propagation de la lumière, les coefficients d'absorption, de diffusion et d'anisotropie des tissus ont été extraits des traces expérimentales, avec d'autant plus de précision que la plage spectrale utilisée est grande.<br />Même si des améliorations sont attendues, l'emploi de continua en microscopie de fluorescence et en spectroscopie est validé.
27

Cardiac T-Tubule Membranes - Nanostructure and Remodeling Mechanisms in Disease

Wagner, Eva 10 December 2012 (has links)
No description available.
28

Super resolution optical imaging – image analysis, multicolor development and biological applications

Rönnlund, Daniel January 2014 (has links)
This thesis focuses on super resolution STED optical imaging. STED provides a wealth of new informational content to the acquired images by using stimulated emission to surpass the diffraction limit in optical fluorescence microscopy. To further increase the informational content, a new method to perform multicolor STED imaging by exploiting differences in the photostability and excitation spectra of dyes is presented. In order to extract information from the images, computational algorithms which handle the new type of high resolution informational content are developed. We propose that multicolor super resolution imaging in combination with image analysis can reduce the amount of clinical samples required to perform accurate cancer diagnosis. To date, such diagnosis is based mainly on significant amounts of tissue samples extracted from the suspected tumor site. The sample extraction often requires anesthetics and can lead to complications such as hematoma, infections and even cancer cell ceding along the needle track. We show that by applying multicolor STED and image analysis, the information gained from single cells is greatly increased. We therefore propose that accurate diagnosis can be based on significantly less extracted tissue material, allowing for a more patient friendly sampling. This approach can also be applied when studying blood platelets, where we show how the high informational content can be used to identify platelet specific activational states. Since platelets are involved in many different types of diseases, such analysis could provide means of performing truly minimally invasive diagnostics based on a simple blood test. In addition, our data makes it possible to understand in finer detail the underlying mechanisms rendering cells metastasis competent. We combine the high resolution spatial information provided by STED with information regarding the adhesive forces of cells measured by TFM (Traction Force Microscopy) and the cell stiffness measured by AFM (Atomic Force Microscopy). Such comparisons provide a link between the specific highly resolved protein distributions and different cellular mechanics and functions. This thesis also includes STED imaging and analysis on the spatial organization of neuronal synaptic regulating proteins, implicating the speed with which neuronal signaling can be regulated. / <p>QC 20140207</p>
29

Fluorescent Dyes with Large Stokes Shifts of 80−200 nm for Optical Microscopy and Nanoscopy

Sednev, Maksim 08 June 2015 (has links)
No description available.
30

Lipid organisation and dynamics in the myelin membrane sheets

Steshenko, Olena 21 October 2013 (has links)
No description available.

Page generated in 0.0158 seconds