• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 21
  • 19
  • 14
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 268
  • 268
  • 103
  • 75
  • 67
  • 59
  • 33
  • 29
  • 29
  • 29
  • 29
  • 28
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

An Optical Method of Strain Measurement in the Split Hopkinson Pressure Bar

Swantek, Steven David 29 August 2000 (has links)
The split Hopkinson pressure bar (SHPB) continues to be one of the most common methods of testing materials at medium rates of strain. Elevated rates of strain, such as those found in impact and explosive applications, have been shown to induce phenomena such as strain hardening and phase transitions that can significantly affect the strength of most materials [14]. Due to its relative simplicity and robustness, the SHPB remains one of the preferred platforms for evaluating mechanical properties of materials at rates of strain up to approximately 104 in/in-s (s-1). At the Naval Surface Warfare Center Dahlgren Division (NSWCDD), research has been conducted in which a semiconductor laser diode has been used to measure the radial strain of a plastically deforming cylindrical test specimen in the SHPB. The SHPB consists of two long, slender cylindrical bars, denoted input and output bars, that "sandwich" a cylindrical test specimen. Utilizing a high-pressure gas gun, a third cylindrical steel bar, known as the striker bar, is fired at the input bar, causing a compressive stress wave to travel through the input bar to the input bar - test specimen interface. At this interface, a portion of the stress wave propagates through the test specimen while the remainder of the pulse reflects back through the input bar as a tensile stress wave. The non-reflected portion of the stress pulse transmits through the test specimen and into the output bar causing the specimen to deform both elastically and plastically. Strain gages mounted to the input and output pressure bars measure both the incident, transmitted and reflected pulses. Specimen stress can be calculated using the transmitted strain signal while specimen strain and strain rate can be computed using the reflected strain pulse. In order to measure the specimen strain directly, a 670-nm wavelength semiconductor laser diode was affixed to the SHPB such that a vertical line of light approximately 250 micrometer (µm) wide was generated across the diameter of the test specimen. A collector lens located aft of the specimen was positioned to collate the light not occluded by the diameter of the specimen and refocus the light to be collected by a 25 MHz photodetector. Thus, changes in specimen diameter due to the impact event would result in more light being occluded by the specimen and less spectral energy being collected by the photodetector. The light collected by the photodetector is then converted to a voltage output before being recorded by a digital storage oscilloscope. With a known voltage-to-diameter calibration relationship, medium strain rate compressive tests were conducted to compare the optically measured strain results with the data gathered with the existing strain gages. It was found that the optical measurement system provided increased bandwidth and greater resolution than the conventional strain gage instrumentation while generating strain and strain rate results within 6.7% of corresponding strain gage data. This increased bandwidth and resolution allows the identification of both the elastic and plastic behavior of the specimen. In addition, the loading and unloading of the specimen can be clearly seen in the optical strain signal. These phenomena are evident in the peak diameter and strain achieved by the specimen, data not previously available with strain gage instrumentation. The plastic modulus, the theoretical relationship between the stress and strain in the plastic regime, also exhibits a significant increase in magnitude due to this ability to measure peak rather than average strain. Finally, by ridding the experiment of the input bar strain gage, input bar dispersion and the electrical and mechanical errors associated with the input bar strain gage were nullified. These conclusions will be validated through the presentation of several sets of experimental data correlated to data gathered previously. / Master of Science
132

Failure of polymeric materials at ultra-high strain rates

Callahan, Kyle Richard 10 May 2024 (has links) (PDF)
Understanding the failure behavior of polymers subjected to an ultrahigh strain rate (UHSR) impact is crucial for their applications in any protective shielding. But little is known about how polymers respond to UHSR events at the macroscale, or what effect their chemical makeups and morphology contribute. This dissertation aims to answer these questions by characterizing the responses of polymers subjected to UHSRs, investigating how the polymer molecular architecture and morphologies alter the macroscopic response during UHSRs via hypervelocity impact (HVI), linking the behaviors of UHSR events between the macro- and nano-length scales, and determining the consequences of UHSR impacts on polymer chains. Macroscale UHSR impacts are conducted using a two-stage light gas gun (2SLGG) to induce an HVI. Different molecular weights and thicknesses of polycarbonate were considered. The HVI behavior of polycarbonate is characterized using both real-time and postmortem techniques. The response depends on target thickness and impact velocity (vi). However, negligible difference is observed between the HVI results for the two differing entanglement densities. These contrasts previous conclusions drawn on the nanoscale during UHSR impacts which capture an increase in the energy arrested from the projectile with increasing entanglement density. To link the UHSR phenomena from nano to macroscale, laser-induced projectile impact testing (LIPIT) is conducted on polymethyl methacrylate (PMMA) thin films on the nanoscale in addition to ballistic and 2SLGG impacts at macroscale. Applying Buckingham-Π theorem, scaling relationships for the minimum perforation velocity and the residual velocity across these length scales were developed. It is shown that the ratios between target thickness to projectile radius, between projectile and target density, and the velocity of the compressive stress wave traveling through the target are the governing parameters for the UHSR responses of polymers across theses length scales. The effect UHSRs have on the polymer is investigated via ex-situ analysis by capturing polymer debris using a custom-built debris catcher. Different material-vi combinations are examined. X-ray diffraction and differential scanning calorimetry are used to characterize the HVI debris. Evidence of char was found within the debris. This dissertation advances the knowledge regarding the failure behavior of polymer materials subjected to UHSRs.
133

Investigation of Structural Response to Blast Loading Using Explicit Finite Element Analysis

Blomqvist, Jonatan, Karlsson, Victor January 2024 (has links)
This master's thesis is focused on the structural response due to blast loading, where the geometry used was arbitrary but heavily inspired by Siemens Energy. The aim of the thesis is to gain a better understanding on how to model the blast load and how it affects the structure, as well as to study the modeling of bolts with both pre-tension and a damage criteria in an explicit analysis. Lastly, the importance of strain rate dependent material models was studied. Other aspects such as mass scaling and Rayleigh damping were also investigated. The software used to solve these tasks were Hypermesh, Abaqus and Python. To conclude, the conclusions drawn from this thesis was that bolts should be modeled using connector elements, and including pre-tension is more conservative than not using it for the case studied. However, for the material modeling it gives more conservative results when using a strain rate independent material model compared to the strain rate dependent model, and is advised to be used in the future.
134

Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation Dynamics

Hosseinzadeh Delandar, Arash January 2015 (has links)
Plasticity in crystalline solids is controlled by the microscopic line defects known as “dislocations”. Decisive role of dislocations in crystal plasticity in addition to fundamentals of plastic deformation are presented in the current thesis work. Moreover, major features of numerical modeling method “Discrete Dislocation Dynamics (DDD)” technique are described to elucidate a powerful computational method used in simulation of crystal plasticity. First part of the work is focused on the investigation of strain rate effect on the dynamic deformation of crystalline solids. Single crystal copper is chosen as a model crystal and discrete dislocation dynamics method is used to perform numerical uniaxial tensile test on the single crystal at various high strain rates. Twenty four straight dislocations of mixed character are randomly distributed inside a model crystal with an edge length of 1 µm subjected to periodic boundary conditions. Loading of the model crystal with the considered initial dislocation microstructure at constant strain rates ranging from 103 to 105s1 leads to a significant strain rate sensitivity of the plastic flow. In addition to the flow stress, microstructure evolution of the sample crystal demonstrates a considerable strain rate dependency. Furthermore, strain rate affects the strain induce microstructure heterogeneity such that more heterogeneous microstructure emerges as strain rate increases. Anisotropic characteristic of plasticity in single crystals is investigated in the second part of the study. Copper single crystal is selected to perform numerical tensile tests on the model crystal along two different loading directions of [001] and [111] at two high strain rates. Effect of loading orientation on the macroscopic behavior along with microstructure evolution of the model crystal is examined using DDD method. Investigation of dynamic response of single crystal to the mechanical loading demonstrates a substantial effect of loading orientation on the flow stress. Furthermore, plastic anisotropy is observed in dislocation density evolution such that more dislocations are generated as straining direction of single crystal is changed from [001] to [111] axis. Likewise, strain induced microstructure heterogeneity displays the effect of loading direction such that more heterogeneous microstructure evolve as single crystal is loaded along [111] direction. Formation of slip bands and consequently localization of plastic deformation are detected as model crystal is loaded along both directions. / <p>QC 20151015</p>
135

Strain Rate Sensitivity of Ti-6Al-4V and Inconel 718 and its Interaction with Fatigue Performance at Different Speeds

Juratovac, Joseph M. January 2020 (has links)
No description available.
136

Internal State Variable Modeling and Experiments of Structure-Property Relationships of Iron Based Alloys

Brauer, Shane A 06 May 2017 (has links)
An investigation of the microstructure-mechanical property relationships for gray cast iron and a vintage ASTM A7 steel are presented herein. Gray cast iron was shown to have a moderate sensitivity to strain rate and a large disparity in behavior between compression, tension, and torsion. ASTM A7 steel was shown to behave in a more complex manor with the strain rate sensitivity having a negative relationship in tension and positive relationship in compression and torsion, the tensile stress-state producing the highest stress response, and the material producing a higher stress response when exposed to elevated temperatures. The counterintuitive behavior observed in A7 steel was attributed to dynamic strain aging. The Mississippi State University Internal State Variable Plasticity-Damage model was updated to accurately capture negative strain rate sensitivity and DSA embrittlement by developing kinematic, thermodynamic, and kinetic constitutive relationships for dynamic strain aging. A parametric study was performed to elucidate the behavior of the new internal state variable for dynamic strain aging. Gray cast iron was successfully calibrated to a pre-DSA version of the plasticity-damage model and A7 steel was successfully calibrated to the updated plasticity-damage model.
137

The Deformation and Fracture Energy of Natural Rubber Under High Strain Rates

Al-Quraishi, Ali Abdul Hussain 02 October 2007 (has links)
No description available.
138

Web-based dynamic material modeling

Nanjappa, Jagdish January 2002 (has links)
No description available.
139

Fragmentation and reaction of structural energetic materials

Aydelotte, Brady Barrus 13 January 2014 (has links)
Structural energetic materials (SEM) are a class of multicomponent materials which may react under various conditions to release energy. Fragmentation and impact induced reaction are not well characterized phenomena in SEMs. The structural energetic systems under consideration here combine aluminum with one or more of the following: nickel, tantalum, tungsten, and/or zirconium. These metal+Al systems were formulated with powders and consolidated using explosive compaction or the gas dynamic cold spray process. Fragment size distributions of the indicated metal+Al systems were explored; mean fragment sizes were found to be smaller than those from homogeneous ductile metals at comparable strain rates, posing a reduced risk to innocent bystanders if used in munitions. Extensive interface failure was observed which suggested that the interface density of these systems was an important parameter in their fragmentation. Existing fragmentation models for ductile materials did not adequately capture the fragmentation behavior of the structural energetic materials in question. A correction was suggested to modify an existing fragmentation model to expand its applicability to structural energetic materials. Fragment data demonstrated that the structural energetic materials in question provided a significant mass of combustible fragments. The potential combustion enthalpy of these fragments was shown to be significant. Impact experiments were utilized to study impact induced reaction in the indicated metal+Al SEM systems. Mesoscale parametric simulations of these experiments indicated that the topology of the microstructure constituents, particularly the stronger phase(s), played a significant role in regulating impact induced reactions. Materials in which the hard phase was topologically connected were more likely to react at a lower impact velocity due to plastic deformation induced temperature increases. When a compliant matrix surrounded stronger, simply connected particles, the compliant matrix accommodated nearly all of the deformation, which limited plastic deformation induced temperature increases in the stronger particles and reduced reactivity. Decreased difference between the strength of the constituents in the material also increased reactivity. The results presented here demonstrate that the fragmentation and reaction of metal+Al structural energetic materials are influenced by composition, microstructure topology, interface density, and constituent mechanical properties.
140

Thermo-mechanical strain rate-dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers

Gur, S., Mishra, S. K., Frantziskonis, G. N. 31 May 2015 (has links)
A study on shape memory alloy materials as vibration dampers is reported. An important component is the strain rate-dependent and temperature-dependent constitutive behavior of shape memory alloy, which can significantly change its energy dissipation capacity under cyclic loading. The constitutive model used accounts for the thermo-mechanical strain rate-dependent behavior and phase transformation. With increasing structural flexibility, the hysteretic loop size of shape memory alloy dampers increases due to increasing strain rates, thus further decreasing the response of the structure to cyclic excitation. The structure examined is a beam, and its behavior with shape memory alloy dampers is compared to the same beam with conventional dampers. Parametric studies reveal the superior performance of the shape memory alloy over the conventional dampers even at the resonance frequency of the beam-damper system. An important behavior of the shape memory alloy dampers is discovered, in that they absorb energy from the fundamental and higher vibration modes. In contrast, the conventional dampers transfer energy to higher modes. For the same beam control, the stiffness requirement for the shape memory alloy dampers is significantly less than that of the conventional dampers. Response quantities of interest show improved performance of the shape memory alloy over the conventional dampers under varying excitation intensity, frequency, temperature, and strain rate.

Page generated in 0.072 seconds