131 |
Modelling of the dynamic tool-chip interface in metal cuttingQi, Hong Sheng, Mills, B. January 2003 (has links)
No / The formation of tribo-layers during machining is very common phenomena, especially when machining `free machining¿ steels. Several kinds of tribo-layers formed in metal cutting processes have been reported, layers of inclusions from the workpiece, oxide layers due to chemical reaction, plastic deformation layers, material transfer layers (MTLs) or built-up layers (BULs). A new tool¿chip contact model is proposed to explain the tribo-layer phenomena, which considers the nature of the shear strain rate distribution in the secondary deformation zone. A shear strain rate distribution in this zone having a shape similar to that found in the preliminary zone is proposed. A cutting interface (CI) is defined and this interface is at different location to the material boundary of tool and chip (MBTC). This difference is a key factor in the formation of the tribo-layer in the secondary deformation zone. This model can be used in improving tool wear prediction and the estimation of tool life.
|
132 |
Failure of polymeric materials at ultra-high strain ratesCallahan, Kyle Richard 10 May 2024 (has links) (PDF)
Understanding the failure behavior of polymers subjected to an ultrahigh strain rate (UHSR) impact is crucial for their applications in any protective shielding. But little is known about how polymers respond to UHSR events at the macroscale, or what effect their chemical makeups and morphology contribute. This dissertation aims to answer these questions by characterizing the responses of polymers subjected to UHSRs, investigating how the polymer molecular architecture and morphologies alter the macroscopic response during UHSRs via hypervelocity impact (HVI), linking the behaviors of UHSR events between the macro- and nano-length scales, and determining the consequences of UHSR impacts on polymer chains. Macroscale UHSR impacts are conducted using a two-stage light gas gun (2SLGG) to induce an HVI. Different molecular weights and thicknesses of polycarbonate were considered. The HVI behavior of polycarbonate is characterized using both real-time and postmortem techniques. The response depends on target thickness and impact velocity (vi). However, negligible difference is observed between the HVI results for the two differing entanglement densities. These contrasts previous conclusions drawn on the nanoscale during UHSR impacts which capture an increase in the energy arrested from the projectile with increasing entanglement density. To link the UHSR phenomena from nano to macroscale, laser-induced projectile impact testing (LIPIT) is conducted on polymethyl methacrylate (PMMA) thin films on the nanoscale in addition to ballistic and 2SLGG impacts at macroscale. Applying Buckingham-Π theorem, scaling relationships for the minimum perforation velocity and the residual velocity across these length scales were developed. It is shown that the ratios between target thickness to projectile radius, between projectile and target density, and the velocity of the compressive stress wave traveling through the target are the governing parameters for the UHSR responses of polymers across theses length scales. The effect UHSRs have on the polymer is investigated via ex-situ analysis by capturing polymer debris using a custom-built debris catcher. Different material-vi combinations are examined. X-ray diffraction and differential scanning calorimetry are used to characterize the HVI debris. Evidence of char was found within the debris. This dissertation advances the knowledge regarding the failure behavior of polymer materials subjected to UHSRs.
|
133 |
Investigation of Structural Response to Blast Loading Using Explicit Finite Element AnalysisBlomqvist, Jonatan, Karlsson, Victor January 2024 (has links)
This master's thesis is focused on the structural response due to blast loading, where the geometry used was arbitrary but heavily inspired by Siemens Energy. The aim of the thesis is to gain a better understanding on how to model the blast load and how it affects the structure, as well as to study the modeling of bolts with both pre-tension and a damage criteria in an explicit analysis. Lastly, the importance of strain rate dependent material models was studied. Other aspects such as mass scaling and Rayleigh damping were also investigated. The software used to solve these tasks were Hypermesh, Abaqus and Python. To conclude, the conclusions drawn from this thesis was that bolts should be modeled using connector elements, and including pre-tension is more conservative than not using it for the case studied. However, for the material modeling it gives more conservative results when using a strain rate independent material model compared to the strain rate dependent model, and is advised to be used in the future.
|
134 |
Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation DynamicsHosseinzadeh Delandar, Arash January 2015 (has links)
Plasticity in crystalline solids is controlled by the microscopic line defects known as “dislocations”. Decisive role of dislocations in crystal plasticity in addition to fundamentals of plastic deformation are presented in the current thesis work. Moreover, major features of numerical modeling method “Discrete Dislocation Dynamics (DDD)” technique are described to elucidate a powerful computational method used in simulation of crystal plasticity. First part of the work is focused on the investigation of strain rate effect on the dynamic deformation of crystalline solids. Single crystal copper is chosen as a model crystal and discrete dislocation dynamics method is used to perform numerical uniaxial tensile test on the single crystal at various high strain rates. Twenty four straight dislocations of mixed character are randomly distributed inside a model crystal with an edge length of 1 µm subjected to periodic boundary conditions. Loading of the model crystal with the considered initial dislocation microstructure at constant strain rates ranging from 103 to 105s1 leads to a significant strain rate sensitivity of the plastic flow. In addition to the flow stress, microstructure evolution of the sample crystal demonstrates a considerable strain rate dependency. Furthermore, strain rate affects the strain induce microstructure heterogeneity such that more heterogeneous microstructure emerges as strain rate increases. Anisotropic characteristic of plasticity in single crystals is investigated in the second part of the study. Copper single crystal is selected to perform numerical tensile tests on the model crystal along two different loading directions of [001] and [111] at two high strain rates. Effect of loading orientation on the macroscopic behavior along with microstructure evolution of the model crystal is examined using DDD method. Investigation of dynamic response of single crystal to the mechanical loading demonstrates a substantial effect of loading orientation on the flow stress. Furthermore, plastic anisotropy is observed in dislocation density evolution such that more dislocations are generated as straining direction of single crystal is changed from [001] to [111] axis. Likewise, strain induced microstructure heterogeneity displays the effect of loading direction such that more heterogeneous microstructure evolve as single crystal is loaded along [111] direction. Formation of slip bands and consequently localization of plastic deformation are detected as model crystal is loaded along both directions. / <p>QC 20151015</p>
|
135 |
Strain Rate Sensitivity of Ti-6Al-4V and Inconel 718 and its Interaction with Fatigue Performance at Different SpeedsJuratovac, Joseph M. January 2020 (has links)
No description available.
|
136 |
Internal State Variable Modeling and Experiments of Structure-Property Relationships of Iron Based AlloysBrauer, Shane A 06 May 2017 (has links)
An investigation of the microstructure-mechanical property relationships for gray cast iron and a vintage ASTM A7 steel are presented herein. Gray cast iron was shown to have a moderate sensitivity to strain rate and a large disparity in behavior between compression, tension, and torsion. ASTM A7 steel was shown to behave in a more complex manor with the strain rate sensitivity having a negative relationship in tension and positive relationship in compression and torsion, the tensile stress-state producing the highest stress response, and the material producing a higher stress response when exposed to elevated temperatures. The counterintuitive behavior observed in A7 steel was attributed to dynamic strain aging. The Mississippi State University Internal State Variable Plasticity-Damage model was updated to accurately capture negative strain rate sensitivity and DSA embrittlement by developing kinematic, thermodynamic, and kinetic constitutive relationships for dynamic strain aging. A parametric study was performed to elucidate the behavior of the new internal state variable for dynamic strain aging. Gray cast iron was successfully calibrated to a pre-DSA version of the plasticity-damage model and A7 steel was successfully calibrated to the updated plasticity-damage model.
|
137 |
The Deformation and Fracture Energy of Natural Rubber Under High Strain RatesAl-Quraishi, Ali Abdul Hussain 02 October 2007 (has links)
No description available.
|
138 |
Web-based dynamic material modelingNanjappa, Jagdish January 2002 (has links)
No description available.
|
139 |
Fragmentation and reaction of structural energetic materialsAydelotte, Brady Barrus 13 January 2014 (has links)
Structural energetic materials (SEM) are a class of multicomponent materials which may react under various conditions to release energy. Fragmentation and impact induced reaction are not well characterized phenomena in SEMs. The structural energetic systems under consideration here combine aluminum with one or more of the following: nickel, tantalum, tungsten, and/or zirconium. These metal+Al systems were formulated with powders and consolidated using explosive compaction or the gas dynamic cold spray process.
Fragment size distributions of the indicated metal+Al systems were explored; mean fragment sizes were found to be smaller than those from homogeneous ductile metals at comparable strain rates, posing a reduced risk to innocent bystanders if used in munitions. Extensive interface failure was observed which suggested that the interface density of these systems was an important parameter in their fragmentation. Existing fragmentation models for ductile materials did not adequately capture the fragmentation behavior of the structural energetic materials in question. A correction was suggested to modify an existing fragmentation model to expand its applicability to structural energetic materials. Fragment data demonstrated that the structural energetic materials in question provided a significant mass of combustible fragments. The potential combustion enthalpy of these fragments was shown to be significant.
Impact experiments were utilized to study impact induced reaction in the indicated metal+Al SEM systems. Mesoscale parametric simulations of these experiments indicated that the topology of the microstructure constituents, particularly the stronger phase(s), played a significant role in regulating impact induced reactions. Materials in which the hard phase was topologically connected were more likely to react at a lower impact velocity due to plastic deformation induced temperature increases. When a compliant matrix surrounded stronger, simply connected particles, the compliant matrix accommodated nearly all of the deformation, which limited plastic deformation induced temperature increases in the stronger particles and reduced reactivity. Decreased difference between the strength of the constituents in the material also increased reactivity. The results presented here demonstrate that the fragmentation and reaction of metal+Al structural energetic materials are influenced by composition, microstructure topology, interface density, and constituent mechanical properties.
|
140 |
Thermo-mechanical strain rate-dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampersGur, S., Mishra, S. K., Frantziskonis, G. N. 31 May 2015 (has links)
A study on shape memory alloy materials as vibration dampers is reported. An important component is the strain rate-dependent and temperature-dependent constitutive behavior of shape memory alloy, which can significantly change its energy dissipation capacity under cyclic loading. The constitutive model used accounts for the thermo-mechanical strain rate-dependent behavior and phase transformation. With increasing structural flexibility, the hysteretic loop size of shape memory alloy dampers increases due to increasing strain rates, thus further decreasing the response of the structure to cyclic excitation. The structure examined is a beam, and its behavior with shape memory alloy dampers is compared to the same beam with conventional dampers. Parametric studies reveal the superior performance of the shape memory alloy over the conventional dampers even at the resonance frequency of the beam-damper system. An important behavior of the shape memory alloy dampers is discovered, in that they absorb energy from the fundamental and higher vibration modes. In contrast, the conventional dampers transfer energy to higher modes. For the same beam control, the stiffness requirement for the shape memory alloy dampers is significantly less than that of the conventional dampers. Response quantities of interest show improved performance of the shape memory alloy over the conventional dampers under varying excitation intensity, frequency, temperature, and strain rate.
|
Page generated in 0.0596 seconds