• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 67
  • 16
  • 16
  • 15
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 244
  • 244
  • 77
  • 63
  • 55
  • 52
  • 43
  • 42
  • 40
  • 37
  • 35
  • 34
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Dreidimensionale Strukturanalyse und Modellierung des Kraft-Dehnungsverhaltens von Fasergefügen

Wolfinger, Tobias 14 March 2017 (has links) (PDF)
Der Einsatz von Fasergefügen und insbesondere von Papier geht heute über dessen ursprüngliches Anwendungsgebiet als Informationsträger weit hinaus. Mit alternativen und neuen Aufgabenfeldern des Papiers kommen auch weitere, qualitative Anforderungen hinzu, welche es während der Herstellung, Weiterverarbeitung und Nutzung erfüllen muss. In der Vergangenheit stand verstärkt z.B. die Verbesserung der statischen und dynamischen Festigkeitseigenschaften im Vordergrund. Für viele Anwendungsfälle spielt jedoch auch die Dehnung eine entscheidende Rolle. Beispiele sind Sackpapier oder Elektroisolationspapier. Darum verfolgt diese Arbeit das Ziel, systematisch und anhand eines neuen Dehnungsmodells, qualitativ und quantitativ die Einflüsse der Faser- und Gefügeeigenschaften anhand ausgewählter Prozessbedingungen auf das Kraft-Dehnungsverhalten, aber insbesondere auf dessen Dehnung zu untersuchen. Des Weiteren wurde eine Methode entwickelt, mit der es unter Nutzung eines Röntgen-Computertomographen möglich ist, weitere Gefügeparameter, auch während einer semi-dynamischen Zugprüfung in-situ zu ermitteln. Für die Bewertung der Fasereigenschaften wurden vier Faserstoffe ausgewählt. Zum Einsatz kam ein ungebleichter Nadelholzsulfatzellstoff (UKP), ein gebleichter Eukalyptuszellstoff, Baumwolllinters und Tencel, eine synthetische Cellulosefaser. Diese Faserstoffe sind chemisch und morphologisch analysiert worden, bevor sie sowohl überwiegend fibrillierend als auch überwiegend kürzend in einem Refiner gemahlen wurden. Nach unterschiedlich hohem Eintrag an massenspezifischer Mahlarbeit in den Faserstoff wurden aus der Suspension Papiermuster gebildet, schrumpfungsbehindert getrocknet und charakterisiert. Durch die Mahlung der Faserstoffe erfolgte eine Reduktion deren mittlerer längengewichteter Faserkonturlänge, der Feinstoffanteil konnte gesteigert werden und das Wasserrückhaltevermögen nahm zu. Es konnte ein unterschiedliches Verhalten der Entwicklung des Wasserrückhaltevermögens zwischen dem ungebleichten Nadelholzsulfatzellstoff und dem gebleichten Eukalyptus gegenüber den Baumwolllinters und den Tencelfasern gefunden werden. Das Wasserrückhaltevermögen von Baumwolllinters und den Tencelfasern blieb, unabhängig von der Mahlstrategie, fast bis zum maximalen Eintrag an massenspezifischer Mahlarbeit von ca. 770 kWh/t unbeeinflusst. Mit den erhaltenen Kraft-Dehnungsdiagrammen der Papiermuster, welche durch eine uniaxiale Zugprüfung mit konstanter Dehnungsgeschwindigkeit messtechnisch erfasst wurden, konnte durch eine Kurveneinpassung mit dem entwickelten Dehnungsmodell das jeweilige Kraft-Dehnungsverhalten mathematisch nachgebildet werden. Dieser neue Modellansatz wurde gewählt, nachdem die Auswertung des Ansatzes von Paetow [77;78;79;90] zu große Abweichungen bei bestimmten Papiermustern aufzeigte. Dies ermöglichte die quantitative Auswertung relevanter Parameter der Kraft-Dehnungskurven. Dabei wurden der Elastizitätsmodul, die Reißlänge und die Dehnung bei maximaler Reißlänge bewertet. Eine sehr hohe Reißlänge konnte mit einem fibrillierend gemahlenem, ungebleichtem Nadelholzsulfatzellstoff und eine hohe Dehnung mit einem, ebenfalls fibrillierend gemahlenem Eukalyptuszellstoff erreicht werden. Des Weiteren sind die Reißlänge am Übergang von einem initial linearen in den nicht-linearen Kurventeil, ein Abknickfaktor sowie der weitere Kurvenverlauf nach dem nicht-linearen Bereich, bis zur maximalen Reißlänge des Gefüges bewertet worden. Der letzte Kurvenbereich wurde entweder durch den weiteren, nicht-linearen Verlauf oder durch einen sekundären Linearbereich charakterisiert. Der von Seth und Page [22] dargestellte Einfluss der Faserstoffmahlung auf den Verlauf der Kraft-Dehnungskurve von Papier konnte nicht nachgebildet werden. Dies zeigte auch, dass die in dieser Arbeit gewonnenen Erkenntnisse durch eine Korrektur des Elastizitätsmoduls mit den Kraft-Dehnungskurven nicht mit den Ergebnissen aus [22] übereinstimmen. Die Faserstoffmahlung hat demnach nicht nur einen Einfluss auf die maximal erreichbare Reißlänge und Dehnung, sondern beeinflusst auch den qualitativen Verlauf der Kraft-Dehnungskurve von Papier. Es konnten keine individuellen Einflussgröße der Fasermorphologie und der Prozessparameter auf die Dehnung oder das Kraft-Dehnungsverhalten festgestellt werden, da sich die meisten dieser Eigenschaften direkt mit der eingebrachten, massenspezifischen Mahlarbeit verändern, die Papierdehnung jedoch schon nach Erreichen einer moderaten massenspezifischen Mahlarbeit von ca. 100 – 200 kWh/t nicht weiter steigern ließ. Für eine weitere Bewertung der Einflüsse auf das Kraft-Dehnungsverhalten von Papier wurden Messwerte aus [143] analysiert. Dabei zeigte sich, dass ein Anstieg an Fasern mit einer hohen Faserkräuselung die Reißlänge des Papiers sowie den Elastizitätsmodul signifikant reduziert. Die Reißlänge am Kurvenübergang vom initial linearen in den nicht-linearen Teil bleibt dabei jedoch konstant. Ein anderes Verhalten, welches mit den Ergebnissen von Seth und Page [22] sowie Lowe [12] übereinstimmt, ist die Auswirkung eines kationischen Additivs wie z.B. Stärke auf die Entwicklung des Kraft-Dehnungsverhaltens. Es konnte nachgewiesen werden, dass das Additiv keinerlei Einfluss auf den initial linearen sowie den nicht-linearen Teil der Kraft-Dehnungskurve hat, sondern nur den sekundären, linearen Kurvenbereich in Abhängigkeit der Dosiermenge beeinflusst. Dabei wurde die Steigung im sekundären Linearbereich bestimmt. Dieses Verhalten führte zu einer Erweiterung der Theorie von Kallmes [82], welcher nach einem Anstieg der Festigkeit und der Dehnung, ab einer kritischen, relativen Bindungsfläche nur noch einen Anstieg der Festigkeit vorhersagte, jedoch nicht mehr der Dehnung. Auf Grund der in dieser Arbeit gewonnenen Erkenntnisse müssen drei Fälle der Entwicklung des Kraft-Dehnungsverhaltens von Fasergefügen unterschieden werden, welche primär von der Homogenität der Spannungsverteilung im Fasergefüge abhängig sind und z.B. durch die Faserkräuselung oder Blattformation beeinflusst werden kann. Diese neue Ansicht basiert auf dem Verhältnis zwischen der Bindungsenergie der Faser-Faserbindung und dem formbasierten sowie dem längenbasierten Arbeitsaufnahmevermögen der Fasern. Der erste Fall der Gefügedehnung beschreibt das Verhalten, wenn die Bindungsenergie geringer ist als das formbasierte Arbeitsaufnahmevermögen. Dies führt zu einem Auseinandergleiten des Fasergefüges. Dieses Verhalten konnte mit der Analyse von Papierproben aus Linters im Röntgen-Computertomograph qualitativ nachgewiesen werden. Steigt die Bindungsenergie an, wie es der zweite Fall voraussetzt, kann das formbasierte Arbeitsvermögen der Fasern überwunden werden und steht als Dehnvermögen zur Verfügung. Um auch, wie es der dritte Fall beschreibt, das längenbasierte Dehnvermögen der Fasern nutzen zu können, muss die Bindungsenergie zusätzlich durch z.B. ein Additiv oder hohe Drücke in einer Nasspresse weiter steigen. Die erweiterte Theorie bildet nun das gesamte Kraft-Dehnungsverhalten von Fasergefügen ab und muss in weiteren Arbeiten zur Papieranalyse verifiziert werden. Eine wertvolle Ergänzung der zu ermittelnden Gefügeparameter kann durch die entwickelte Methode mit der Röntgen-Computertomographie geleistet werden.
122

First-order reversal curve analysis of magnetoactive elastomers

Linke, Julia M., Borin, Dmitry Yu., Odenbach, Stefan 21 July 2017 (has links) (PDF)
The first magnetization loop and the first stress–strain cycle of magnetoactive elastomers (MAEs) in a magnetic field differ considerably from the following loops and cycles, possibly due to the internal restructuring of the magnetic filler particles and the matrix polymer chains. In the present study, the irreversible magnetization processes during the first magnetization of MAEs with different filler compositions and tensile moduli of the matrix are studied by first-order reversal curve (FORC) measurements. For MAEs with mixed magnetic NdFeB/Fe fillers the FORC distributions and magnetization distributions of the first major loop reveal a complex irreversible magnetization behavior at interaction fields Hu < −50 kA m−1 due to the magnetostatic coupling between the magnetically hard NdFeB and the magnetically soft Fe particles. This coupling is enhanced either if the interparticle distance is reduced by particle motion and restructuring or by an increase in the particle densities. If the stiffness of the matrix is increased, the structuring and thus the interparticle interactions are suppressed and the magnetization reversal is dominated by domain processes in the NdFeB particles at high coercive fields of Hc > 600 kA m−1.
123

A Dynamical Approach to Plastic Deformation of Nano-Scale Materials : Nano and Micro-Indentation

Srikanth, K 07 1900 (has links) (PDF)
Recent studies demonstrate that mechanical deformation of small volume systems can be significantly different from those of the bulk. One such interesting length scale dependent property is the increase in the yield stress with decrease in diameter of micrometer rods, particularly when the diameter is below a micrometer. Intermittent flow may also result when the diameter of the rods is decreased below a certain value. The second such property is the intermittent plastic deformation during nano-indentation experiments. Here again, the instability manifests due to smallness of the sample size, in the form of force fluctuations or displacement bursts. The third such length scale dependent property manifests as ’smaller is stronger’ property in indentation experiments on thin films, commonly called as the indentation size effect (ISE). More specifically, the ISE refers to the increase in the hardness with decreasing indentation depth, particularly below a fraction of a micrometer depth of indentation. The purpose of this thesis is to extend nonlinear dynamical approach to plastic deformation originally introduced by Anantha krishna and coworkers in early 1980’s to nano and micro-indentation process. More specifically, we address three distinct problems : (a) intermittent force/load fluctuations during displacement controlled mode of nano-indentation, (b) displacement bursts during load controlled mode of nano-indentation and (c) devising an alternate framework for the indentation size effect. In this thesis, we demonstrate that our approach predicts not just all the generic features of nano-and micro-indentation and the ISE, the predicted numbers also match with experiments. Nano-indentation experiments are usually carried-out either in a displacement controlled (DC) mode or load controlled (LC) mode. The indenter tip radius typically ranges from few tens of nanometer to few hundreds of nanometers-meters. Therefore, the indented volume is so small that the probability of finding a dislocation is close to zero. This implies that dislocations must be nucleated for further plastic deformation to proceed. This is responsible for triggering intermittent flow as indentation proceeds. While several load drops are seen beyond the elastic limit in the DC controlled experiments, several displacement jumps are seen in the LC experiments. In both cases, the stress corresponding to load maximum on the elastic branch is close to the theoretical yield stress of an ideal crystal, a feature attributed to the absence of dislocations in the indented volume. Hardness is defined as the ratio of the load to the imprint area after unloading and is conventionally measured by unloading the indenter from desired loads to measure the residual plastic imprint area. Then, the hardness so calculated is found to increase with decreasing indentation depth. However, such size dependent effects cannot be explained on the basis of conventional continuum plasticity theories since all mechanical properties are independent of length scales. Early theories suggest that strong strain gradients exist under the indenter that require geometrically necessary dislocations (GNDs) to relax the strain gradients. In an effort to explain the the size effect, these theories introduce a length scale corresponding to the strain gradients. One other feature predicted by subsequent models of the ISE is the linear relation between the square of the hardness and the inverse of the indentation depth. Early investigations on the ISE did recognize that GNDs were required to accommodate strain gradients and that the hardness H is determined by the sum of the statistically stored dislocation (SSD) and GND densities. Following these steps, Nix and Gao derived an expression for the hardness as a function of the indentation depth z. The relevant variables are the SSD and GND densities. An expression for the GND density was obtained by assuming that the GNDs are contained within a hemispherical volume of mean contact radius. The authors derive an expression for the hardness H as a function of indentation depth z given by [ HH 0 ]2 = 1+ zz ∗ . The intercept H0 represents the hardness arising only from SSDs and corresponds to the hardness in the limit of large sample size. The slope z ∗ can be identified as the length scale below which the ISE becomes significant. The authors showed that this linear relation was in excellent agreement with the published results of McElhaney et al for cold rolled polycrystalline copper and single crystals of copper, and single crystals of silver by Ma and Clarke. Subsequent investigations showed that the linear relationship between H2 verses 1/z breaks down at small indentation depths. Much insight into nano-indentation process has come from three distinct types of studies. First, early studies using bubble raft indentation and later studies using colloidal crystals (soft matter equivalent of the crystalline phase) allowed visualization of dislocation nucleation mechanism. Second, more recently, in-situ transmission electron microscope studies of nano-indentation experiments have been useful in understanding the dislocation nucleation mechanism in real materials. Third, considerable theoretical understanding has come largely from various types of simulation studies such as molecular dynamics (MD) simulations, dis¬location dynamics simulations and multiscale modeling simulations (using MD together with dislocation dynamics simulations). A major advantage of simulation methods is their ability to include a range of dislocation mechanisms participating in the evolution of dislocation microstructure starting from the nucleation of a dislocation, its multiplication, formation of locks, junctions etc. However, this advantage is offset by the serious limitations set by short time scales inherent to the above mentioned simulations and the limited size of simulated volumes that can be implemented. Thus, simulation approaches cannot impose experimental parameters such as the indentation rates or radius of the indenter and thickness of the sample, for example in MD simulations. Indeed, the imposed deformation rates are often several orders of magnitude higher than the experimental rates. Consequently, the predicted values of force, indentation depth etc., differ considerably from those reported by experiments. For these reasons, the relevance of these simulations to real materials has been questioned. While several simulations, particularly MD simulation predict several force drops, there are no simulations that predict displacement jumps seen in LC mode experiments. The inability of simulation methods to adopt experimental parameters and the mismatch of the predicted numbers with experiments is main motivation for devising an alternate framework to simulations that can adopt experimental parameters and predict numbers that are comparable to experiments. The basic premise of our approach is that describing time evolution of the relevant variables should be adequate to capture most generic features of nano and micro-indentation phenomenon. In the particular case under study, this point of view is based on the following observation. While one knows that dislocations are the basic defects responsible for plastic deformation occurring inside the sample, the load-indentation depth curve does not include any information about the spatial location of dislocation activity inside the sample. In fact, the measured load and displacement are sample averaged response of the dislocation activity in the sample. This suggests that it should be adequate to use sample averaged dislocation densities to obtain load-indentation depth curve. Keeping this in mind, we devise a method for calculating the contribution from plastic deformation arising from dislocation activity in the entire sample. This is done by setting up rate equations for the relevant sample averaged dislocation densities. The first problem we consider is the force/load fluctuations in displacement controlled nano-indentation. We devise a novel approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and forest dislocation densities. Since the force serrations result from plastic deformation occurring inside the sample, we devise a method for calculating this contribution by setting-up a system of coupled nonlinear time evolution equations for the mobile and forest dislocation densities. The approach follows closely the steps used in the Anantha krishna (AK) model for the Portevin-Le Chatelier (PLC) effect. The model includes nucleation, multiplication and propagation of dislocation loops in the time evolution equation for the mobile dislocation density. We also include other well known dislocation transformation mechanisms to forest dislocation. Several of these dislocation mechanisms are drawn from the AK model for the PLC effect. To illustrate the ability of the model to predict force fluctuations that match experiments, we use the work of Kiely at that employs a spherical indenter. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rate, the radius the indenter etc. The model predicts all the generic features of nano-indentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plas¬ticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths where the load drops disappear, the hardness shows decreasing trend, though marginal. The second problem we consider is the load controlled mode of indentation where sev¬eral displacement jumps of decreasing magnitudes are seen. Even though, the LC mode is routinely used in nano-indentation experiments, there are no models or simulations that predict the generic features of force-displacement curves, in particular, the existence of sev¬eral displacement jumps of decreasing magnitudes. The basic reason for this is the inability of these methods to impose constant load rate during displacement jumps. We then show that an extension of the model for the DC mode predicts all the generic features when the model is appropriately coupled to an equation defining the load rate. Following the model for DC mode, we retain the system of coupled nonlinear time evolution equations for mobile and forest dislocation densities that includes nucleation, multiplication, and propagation threshold mechanisms for mobile dislocations, and other dislocation transformation mechanisms. The commonly used Berkovich indenter is considered. The equations are then coupled to the force rate equation. We demonstrate that the model predicts all the generic features of the LC mode nano-indentation such as the existence of an initial elastic branch followed by several displacement jumps of decreasing magnitudes, and residual plasticity after unloading for a range of model parameter values. In this range, the predicted values of the load, displacement jumps etc., are similar to those found in experiments. Further, optimized set of parameter values can be easily determined that provide a good fit to the load-indentation depth curve of Gouldstone et al for single crystals of Aluminum. The stress corresponding to the maximum force on the Berkovich elastic branch is close to the theoretical yield stress. We also elucidate the ambiguity in defining hardness at nanometer scales where the displacement jumps dominate. The approach also provides insights into several open questions. The third problem we consider is the indentation size effect. The conventional definition of hardness is that it is the ratio of the load to the residual imprint area. The latter is determined by the residual plastic indentation depth through area-depth relation. Yet, the residual plastic indentation depth that is a measure of dislocation mobility, never enters into most hardness models. Rather, the conventional hardness models are based on the Taylor relation for the flow stress that characterizes the resistance to dislocation motion. This is a complimentary property to mobility. Our idea is to provide an alternate way of explaining the indentation size effect by devising a framework that directly calculates the residual plastic indentation depth by integrating the Orowan expression for the plastic strain rate. Following our general approach to plasticity problems, we set-up a system of coupled nonlinear time evolution equations for the mobile, forest (or the SSD) and GND densities. The model includes dislocation multiplication and other well known dislocation transformation mechanisms among the three types of dislocations. The main contributing factor for the evolution of the GND density is determined by the mean strain gradient and the number of sites in the contact area that can activate dislocation loops of a certain size. The equations are then coupled to the load rate equation. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rates, the geometrical quantities defining the Berkovich indenter including the nominal tip radius and other parameters. The hardness is obtained by calculating the residual plastic indentation depth after unloading by integrating the Orowan expression for the plastic strain rate. We demonstrate that the model predicts all features of the indentation size effect, namely, the increase in the hardness with decreasing indentation depth and the linear relation between the square of the hardness and inverse of the indentation depth, for all but 200nm, for a range of parameter values. The model also predicts deviation from the linear relation of H2 as a function of 1/z for smaller depths consistent with experiments. We also show that it is straightforward to obtain optimized parameter values that give a good fit to polycrystalline cold-worked copper and single crystals of silver. Our approach provides an alternate way of understanding the hardness and indentation size effect on the basis of the Orowan equation for plastic flow. This approach must be contrasted with most models of hardness that use the SSD and GND densities as parameters. The thesis is organized as follows. The first Chapter is devoted to background material that covers physical aspects of different kinds of plastic deformation relevant for the thesis. These include the conventional yield phenomenon and the intermittent plastic deformation in bulk materials in alloys exhibiting the Portevin-Le Chatelier (PLC) effect. We then provide background material on nano-and micro-indentation, both experimental aspects and the current status of the DC controlled and LC controlled modes of nano-indentation. Results of simulation methods are briefly summarized. The chapter also provides a survey of hardness models and the indentation size effect. A critical survey of experiments on dislocation microsructure that contradict / support certain predictions of the NixGao model. The current status of numerical simulations are also given. The second Chapter is devoted to introducing the basic steps in modeling plastic deformation using nonlinear dynamical approach. In particular, we describe how the time evolution equations are constructed based on known dislocation mechanisms such as nucleation, multiplication formations of junctions etc. We then consider a model for the continuous yield phenomenon that involves only the mobile and forest densities coupled to constant strain rate condition. This problem is considered in some detail to illustrate how the approach can be used for modeling nano-indentation and indentation size effect. The third Chapter deals with a model for displacement controlled nano-indentation. The fourth Chapter is devoted to adopting these equation to the load controlled mode of nano¬indentation. The fifth Chapter is devoted to modeling the indentation size effect based on calculating residual plastic indentation depth after unloading by using the Orowan’s expression for the plastic strain rate. We conclude the thesis with a Summary, Discussion and Conclusions.
124

Novel Hybrid Columns Made of Ultra-High Performance Concrete and Fiber Reinforced Polymers

Zohrevand, Pedram 26 March 2012 (has links)
The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.
125

First-order reversal curve analysis of magnetoactive elastomers

Linke, Julia M., Borin, Dmitry Yu., Odenbach, Stefan 21 July 2017 (has links)
The first magnetization loop and the first stress–strain cycle of magnetoactive elastomers (MAEs) in a magnetic field differ considerably from the following loops and cycles, possibly due to the internal restructuring of the magnetic filler particles and the matrix polymer chains. In the present study, the irreversible magnetization processes during the first magnetization of MAEs with different filler compositions and tensile moduli of the matrix are studied by first-order reversal curve (FORC) measurements. For MAEs with mixed magnetic NdFeB/Fe fillers the FORC distributions and magnetization distributions of the first major loop reveal a complex irreversible magnetization behavior at interaction fields Hu < −50 kA m−1 due to the magnetostatic coupling between the magnetically hard NdFeB and the magnetically soft Fe particles. This coupling is enhanced either if the interparticle distance is reduced by particle motion and restructuring or by an increase in the particle densities. If the stiffness of the matrix is increased, the structuring and thus the interparticle interactions are suppressed and the magnetization reversal is dominated by domain processes in the NdFeB particles at high coercive fields of Hc > 600 kA m−1.
126

Deformačně napěťová analýza femuru s distrakčním intramedulárním hřebem / Strain and stress analysis of the femur with distraction intramedullary nail

Konvalinka, Jan January 2017 (has links)
This master's thesis is focused on determination and analysis of stress and strain in femur with distraction intramedullary nail for treating leg length discrepancy with the method of distraction osteogenesis. Thesis is mainly focused on states after distraction when the callus consolidates. Problem of determining stress and strain is solved by computational modeling using FEM. Detailed description of modeling is included in this thesis, complicated 3D geometry of bone was acquired from segmentation of CT images. Computational model is solve with 4 different types of callus geometry and also material properties of callus are varied. The influence on stress and strain when the middle distal screw is not applied is also analyzed.
127

Deformační a napěťová analýza dentálního implantátu zavedeného v horní čelisti / Stress-strain analysis of dental implant inserted in maxilla

Dušková, Tereza January 2017 (has links)
Variety of problems can appear when introducing dental implants, especially to in the maxilla. Biggest problems are caused by insufficient quality and volume of the bone tissue of the alveolar process. This thesis focuses on stress-strain analysis of an implant introduced in the maxilla. Mechanical interaction between the implant and bone tissue is solved using computational modelling with the finite element method. From analysis of results, it was discovered that deformation and tension of the implant are influenced by the direction of the load, osseointegration and thickness of the cortical bone tissue. In the anterior region, it is necessary to work with other types of load than axial.
128

Konstrukční návrh závěsu zadního víka osobního automobilu / Rear cover hinge design of car

Bílek, Vojtěch January 2018 (has links)
The thesis deals with the issue of suspension of the 5th passenger car door. The introductory part deals with the possibilities of mounting the 5th passenger car door. In the next part, a HDS hinge was selected, which is further solved using a numerical and experimental method. Aluminium alloy was used on this HDS hinge to reduce weight. In the first step, a technical experiment was performed on the existing state (steel) and a strain-strain analysis was performed. Based on the stress-strain analysis of the material change variant without structural change, unsatisfactory results were obtained. After that, design changes were proposed such as increasing the thickness of the tube wall in the Creo program, and this variant was also subjected to a stress-strain analysis using the numerical modelling. Comparison of the results was based on the values of elastic deformation and equivalent stress. Finally, the thesis dealt with the manufacturability of the proposed component within which, a technical experiment was carried out.
129

Deformačně a napěťová analýza fixátoru dolní končetiny Orthofix / Stress - strain analysis of inferios limb with fixator type Orthofix

Mrázek, Michal January 2008 (has links)
This diploma thesis aims to create a stress strain analysis of Orthofix external fixator applied to lower limb. The introduction summarizes the background research in available scientific publications, targetting the alternatives of treatment, namely application and fixation solutions of long bones. Furthermore parametric models of the fixator and tibia are created in CAD system CATIA. The fixator model enables to create different geometric variations simulating possible fixator settings and moment load in the range of 1-10 Nm. These geometric and loading states of fixator are solved via FEM in ANSYS. Single versions of the states of Orthofix fixator are then subjected to the stress strain analysis.
130

Deformačně a napěťová analýza čelisti se zubním implantátem VNI / Stress - strain analysis of jaw with tooth implant type VNI

Školník, Roman January 2008 (has links)
This diploma thesis is dealt with stress-strain analysis of jowl with teeth implants. Teeth implants when locked in place (jowl) have the ability to replace and be used in the same way as the missing teeth. The implant creates a pillar column in the buccal cavity and then the tooth cap or bridge is secured on the pillar column. In this diploma thesis it is described as a solution of stress and strain of two types of cylindrical teeth implants VNI. Thesis specializes on the influence of deviation implant from the vertical axis. The solution is accomplished in program ANSYS Workbench by Finite Element Method (FEM). The geometric models are made in program SolidWorks 2005.

Page generated in 0.0426 seconds