• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 70
  • 16
  • 16
  • 15
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 248
  • 248
  • 79
  • 63
  • 55
  • 52
  • 43
  • 42
  • 41
  • 38
  • 36
  • 35
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Lateral stability of ultra-high performance fiber-reinforced concrete beams with emphasis in transitory phases / Instabilidade lateral de vigas de concreto de ultra-alto desempenho reforçado com fibras com ênfase em fases transitórias

Krahl, Pablo Augusto 04 July 2018 (has links)
The development of advanced fiber reinforced cement-based materials to provide higher strength, ductility, and durability, as ultra-high performance fiber-reinforced concrete (UHPFRC), enables the design of precast beams with thin sections and reduced self-weight to meet the required flexural performance. However, such slender elements when subjected to transitory phases, and possibly also in permanent stages, are prone to instability failure. So, the present study aims to provide experimental data and analytical solution for UHPFRC beams during the lifting phase, and studies about the other stages. This type of test is rare and was not reported for UHPFRC beams. For testing, the beams were lifted by inclined cables and subjected to a transversal load applied at midspan to induce lateral instability. The displacements of the beams were monitored with total station equipment. Also, a new analytical solution was proposed to predict the failure load of lifted beams and closed-form analytical solutions to predict the rollover load of beams supported by bearing pads and subjected to different loading conditions. Furthermore, there are limited data that characterizes the constitutive behavior of this material. In this context, the present research also focused on providing such laboratory results for UHPFRC with different fiber contents. Besides, analytical models for damage evolution and stress-strain relationship are proposed and applied in numerical simulations. From the results, the UHPFRC beams failed by instability with a load capacity 3.7 times smaller than the flexural load capacity. Furthermore, the analytical solution for lifting predicted the peak load of the experiment with great accuracy. Also, the proposed equations for beams on bearing pads accurately predicted the experimental results available in the literature. The analytical and experimental rollover loads differed by 4.37% and 13.6% for the two studied cases. From material, the stiffness degradation occurred rapidly in UHPFRC under tensile loading while occurred gradually in compression. Also, fiber content influenced toughness and degradation evolution significantly over the loading cycles. Proposed equations were utilized in the Plastic-Damage model of Abaqus that predicted accurately damage growth and cyclic envelopes during all the phases of the tension, compression, and bending tests. The calibrated numerical model also predicted the experimental results with the UHPFRC beams. / O desenvolvimento de materiais avançados à base de cimento reforçado com fibra para fornecer maior resistência, ductilidade e durabilidade, como o concreto de ultra-alto desempenho reforçado com fibras (UHPFRC), permite o projeto de vigas pré-moldadas com seções esbeltas e peso próprio reduzido que atendem desempenho estrutural requerido. No entanto, esses elementos delgados quando submetidos a fases transitórias e também em serviço são propensos a falhar por instabilidade. Então, o presente estudo tem por objetivo apresentar resultados experimentais e soluções analíticas para vigas de UHPFRC durante a fase de içamento e estudos sobre as outras fases. Este tipo de teste é raro e não foi reportado para vigas de UHPFRC. Para o teste, as vigas foram levantadas por cabos inclinados e submetidas a uma carga concentrada transversal aplicada no meio do vão para induzir a instabilidade lateral. Os deslocamentos das vigas foram monitorados com estação total. Além disso, uma nova solução analítica foi proposta para prever a carga de instabilidade das vigas içadas e soluções analíticas para prever a carga de tombamento de vigas suportadas por aparelho de apoio e submetidas a diferentes condições de carregamento. Além disso, existem poucos resultados experimentais que caracterizam o comportamento constitutivo deste material. Neste contexto, a presente pesquisa também se concentrou em fornecer tais resultados experimentais para UHPFRC com diferentes teores de fibras. Além disso, modelos analíticos para evolução de dano e relação tensão-deformação são propostos e aplicados em simulações numéricas. A partir dos resultados, as vigas em içamento falharam por instabilidade com uma capacidade de carga 3,7 vezes menor que a capacidade à flexão. Além disso, a solução analítica para içamento previu carga máxima do experimento com grande precisão. As equações propostas para vigas sobre aparelhos de apoio previram com precisão os resultados experimentais disponíveis na literatura. As cargas de tombamento analíticas e experimental diferiram em 4,37% e 13,6% para os dois casos estudados. Dos resultados do material, a degradação da rigidez ocorreu de maneira rápida no UHPFRC submetido à tração enquanto ocorreu gradualmente na compressão. O teor de fibras influenciou significativamente a tenacidade e a degradação nos ciclos de carregamento. As equações propostas foram utilizadas em um modelo de Dano acoplado à plasticidade que previu com precisão a evolução do dano e as envoltórias cíclicas durante todas as fases dos testes de tração, compressão e flexão. O modelo numérico calibrado também previu os resultados experimentais das vigas de UHPFRC.
172

Lateral stability of ultra-high performance fiber-reinforced concrete beams with emphasis in transitory phases / Instabilidade lateral de vigas de concreto de ultra-alto desempenho reforçado com fibras com ênfase em fases transitórias

Pablo Augusto Krahl 04 July 2018 (has links)
The development of advanced fiber reinforced cement-based materials to provide higher strength, ductility, and durability, as ultra-high performance fiber-reinforced concrete (UHPFRC), enables the design of precast beams with thin sections and reduced self-weight to meet the required flexural performance. However, such slender elements when subjected to transitory phases, and possibly also in permanent stages, are prone to instability failure. So, the present study aims to provide experimental data and analytical solution for UHPFRC beams during the lifting phase, and studies about the other stages. This type of test is rare and was not reported for UHPFRC beams. For testing, the beams were lifted by inclined cables and subjected to a transversal load applied at midspan to induce lateral instability. The displacements of the beams were monitored with total station equipment. Also, a new analytical solution was proposed to predict the failure load of lifted beams and closed-form analytical solutions to predict the rollover load of beams supported by bearing pads and subjected to different loading conditions. Furthermore, there are limited data that characterizes the constitutive behavior of this material. In this context, the present research also focused on providing such laboratory results for UHPFRC with different fiber contents. Besides, analytical models for damage evolution and stress-strain relationship are proposed and applied in numerical simulations. From the results, the UHPFRC beams failed by instability with a load capacity 3.7 times smaller than the flexural load capacity. Furthermore, the analytical solution for lifting predicted the peak load of the experiment with great accuracy. Also, the proposed equations for beams on bearing pads accurately predicted the experimental results available in the literature. The analytical and experimental rollover loads differed by 4.37% and 13.6% for the two studied cases. From material, the stiffness degradation occurred rapidly in UHPFRC under tensile loading while occurred gradually in compression. Also, fiber content influenced toughness and degradation evolution significantly over the loading cycles. Proposed equations were utilized in the Plastic-Damage model of Abaqus that predicted accurately damage growth and cyclic envelopes during all the phases of the tension, compression, and bending tests. The calibrated numerical model also predicted the experimental results with the UHPFRC beams. / O desenvolvimento de materiais avançados à base de cimento reforçado com fibra para fornecer maior resistência, ductilidade e durabilidade, como o concreto de ultra-alto desempenho reforçado com fibras (UHPFRC), permite o projeto de vigas pré-moldadas com seções esbeltas e peso próprio reduzido que atendem desempenho estrutural requerido. No entanto, esses elementos delgados quando submetidos a fases transitórias e também em serviço são propensos a falhar por instabilidade. Então, o presente estudo tem por objetivo apresentar resultados experimentais e soluções analíticas para vigas de UHPFRC durante a fase de içamento e estudos sobre as outras fases. Este tipo de teste é raro e não foi reportado para vigas de UHPFRC. Para o teste, as vigas foram levantadas por cabos inclinados e submetidas a uma carga concentrada transversal aplicada no meio do vão para induzir a instabilidade lateral. Os deslocamentos das vigas foram monitorados com estação total. Além disso, uma nova solução analítica foi proposta para prever a carga de instabilidade das vigas içadas e soluções analíticas para prever a carga de tombamento de vigas suportadas por aparelho de apoio e submetidas a diferentes condições de carregamento. Além disso, existem poucos resultados experimentais que caracterizam o comportamento constitutivo deste material. Neste contexto, a presente pesquisa também se concentrou em fornecer tais resultados experimentais para UHPFRC com diferentes teores de fibras. Além disso, modelos analíticos para evolução de dano e relação tensão-deformação são propostos e aplicados em simulações numéricas. A partir dos resultados, as vigas em içamento falharam por instabilidade com uma capacidade de carga 3,7 vezes menor que a capacidade à flexão. Além disso, a solução analítica para içamento previu carga máxima do experimento com grande precisão. As equações propostas para vigas sobre aparelhos de apoio previram com precisão os resultados experimentais disponíveis na literatura. As cargas de tombamento analíticas e experimental diferiram em 4,37% e 13,6% para os dois casos estudados. Dos resultados do material, a degradação da rigidez ocorreu de maneira rápida no UHPFRC submetido à tração enquanto ocorreu gradualmente na compressão. O teor de fibras influenciou significativamente a tenacidade e a degradação nos ciclos de carregamento. As equações propostas foram utilizadas em um modelo de Dano acoplado à plasticidade que previu com precisão a evolução do dano e as envoltórias cíclicas durante todas as fases dos testes de tração, compressão e flexão. O modelo numérico calibrado também previu os resultados experimentais das vigas de UHPFRC.
173

An Active Study of a Roller Coaster Project in Asia.

Bridges, Robert Leamon 08 May 2010 (has links)
A roller coaster manufacturer became aware that improperly heat treated track couplings were sent to a construction site for assembly. Concerns were that suspect couplings might not meet the engineering specifications and could be vulnerable to sudden failure. A testing company in Oak Ridge, TN that specializes in in-situ and laboratory mechanical testing was contacted by the manufacturer for help in this endeavor. The construction company elected to enlist a local testing firm to perform field tests on the components instead of the company in Oak Ridge. The test methods used are incapable of providing quantitative results that could be measured to the engineering specifications, making it unlikely to identify anything but the worst material conditions. This study is an example that the need for accurate analysis is very important. The manufacturer reported that 60 couplings were replaced, but it is presently unknown how many should have been replaced.
174

Der Einfluss einer zweiaxialen Zugbelastung auf das Festigkeits- und Verformungsverhalten von Beton und gemischt bewehrten Bauteilen / The influence of a biaxial tensile stress on the strength and deformation behavior of concrete and mixed reinforced concrete components

Schröder, Steffen 01 February 2013 (has links) (PDF)
Das Zugtragverhalten von bewehrten und unbewehrten Bauteilen wird von einer Vielzahl von Faktoren beeinflusst. Maßgeblich wird es von der Festigkeit des verwendeten Betons, dem Verbundverhalten zwischen Bewehrung und Beton sowie vom vorhandenen Spannungszustand im Bauteil bestimmt. In der Regel werden im täglichen Planungsgeschäft des Ingenieurs einaxiale Spannungszustände unter Berücksichtigung der Materialeigenschaften des Betons aus den Standardprüfungen betrachtet. Jedoch treten in einer Vielzahl von Anwendungen mehraxiale Spannungszustände auf. Beispielhaft sollen hier Bereiche von zweiachsig spannenden Deckenplatten, in Bereichen von Rahmenecken, rotationssymmetrischen Bauwerkshüllen sowie bei Brückenbauwerken mit durchlaufender Fahrbahn im Bereich der Stützen genannt werden. Normative Regelungen sehen bisher im Falle einer zweiaxialen Druckbeanspruchung lediglich die Erhöhung der Druckfestigkeit bzw. Verbundspannung vor. Regelungen zur Festigkeit des Betons unter zweiaxialer Zugbelastung existieren dagegen nicht. Daraus abgeleitet stellt sich die Frage, welchen Einfluss eine zweiaxiale Zugbeanspruchung auf das Festigkeits- und Verformungsverhalten von unbewehrten und bewehrten Bauteilen ausübt. Mit Blick auf übliche Konstruktionsbetone sollen diese Fragestellungen für einen Beton C20/25 und C40/50 geklärt werden. Im Rahmen eines Forschungsvorhabens wurden hierzu Versuche an unbewehrten Betonsscheiben und gemischt bewehrten Bauteilen durchgeführt. Das im CEB-FIP MODELL CODE 90 vorgestellte Modell zur Beschreibung des einaxialen Spannungs-Dehnungs-Verhaltens bildet das reale Verhalten von Beton unter zweiaxialer Zugbelastung nur ungenügend ab. Hierfür werden Modelle zur Beschreibung des Verformungsverhaltens von Beton unter Berücksichtigung von zweiaxialen Spannungszuständen für einen Beton C20/25 und C40/50 entwickelt. Weiterhin werden Bruchkriterien für die zwei Betonsorten vorgestellt, mit denen die Zugfestigkeit des Betons unter zweiaxialer Zugbelastung bestimmt werden kann. Während bei einem Beton C20/25 die zweiaxiale Zugfestigkeit annähernd der einaxialen Zugfestigkeit entspricht, so nimmt die Zugfestigkeit des Betons C40/50 unter zweiaxialer Zugbelastung um ca. 25% ab. Hinsichtlich der Bruchdehnungen unter zweiaxialer Zugbelastung wurde festgestellt, dass diese mit steigendem Spannungsverhältnis 1 : 2 abnehmen. Darüber hinaus bilden die Modelle zur Bestimmung des Spannungs-Dehnungs-Verhaltens des unbewehrten Betons die Versuchsergebnisse sehr gut ab. Mit Hilfe der hier vorliegenden Ergebnisse können somit das Verformungs- und Festigkeitsverhalten von Beton unter zweiaxialer Zugbelastung sehr gut abgebildet werden. In Bauteilversuchen wurde das Verformungsverhalten unter zweiaxialer Zugbelastung von gemischt bewehrten Bauteilen untersucht. Die Bestimmung der Verformungen erfolgte hierbei mittels Dehnmessstreifen auf der Betonoberfläche, dem schlaffen Bewehrungsstahl und dem im nachträglichen Verbund liegenden Spannglied. Ein indirekter Nachweis des Einflusses auf das Verbundverhalten des Spanngliedes erfolgte. Es wurde aufgezeigt, dass unter zweiaxialer Zugbelastung die Dehnungen im Spannstahl infolge der Längsrissbildung über dem Hüllrohr abnehmen. Dies lässt die Aussage zu, dass die Verbundwirkung des Spanngliedes durch eine orthogonal wirkende Zugbelastung negativ beeinflusst wird. Aufbauend auf den Versuchsergebnissen wird eine Empfehlung für den Einsatz von Dehnmessstreifen zur Bestimmung der Verformungen auf einbetonierten Betonstählen gegeben. Die Berechnung der Erstrisslasten aus den Bauteilversuchen mit den entwickelten Bruchkriterien hat eine sehr gute Übereinstimmung ergeben. / The tensile load-bearing characteristics of structural elements made of reinforced or non-reinforced concrete is influenced by a number of factors. Mainly it depends on the strength of the concrete, the interaction between the concrete and the rebar, and the state of stress in the concrete element. Traditionally the designing engineer examines uni-axial stress conditions under consideration of the material properties of the concrete based on standard tests. However, multiple-stress conditions apply for a number of application of such elements, e.g. in concrete slabs designed for bi-axial load bearing, in the joints of frames, in axial symmetrical constructions, or in the intersections of column and deck of multi-span bridges. The commonly used design standard recommends the increase of the compression strength of the concrete or the bond stress for cases of bi-axial load-bearing caused by compression. However, no recommendations are given for the design strength of a concrete under bi-axial tensile stress. Therefore it is interesting to know how a bi-axial tensile stress is influencing the load-bearing and deformation behaviour of structural elements made of reinforced or non-reinforced concrete. This has been investigated for two commonly used concretes (C20/25 and C40/50). Part of an earlier research programme was to perform trials on slabs made of reinforced and non-reinforced concrete. In result a model CEB-FIP MODELL CODE 90 was introduced to describe the deformation of the slab due to a uni-axial stress. However, the model does not satisfactory describe the real behaviour of the slab under a bi-axial tensile stress. In this dissertation a new model will be presented to describe the deformation behaviour of a Concrete C20/25 and a Concrete C40/50 under bi-axial tensile stress. Furthermore, criteria for the two concretes are introduced to describe the ultimate limit state under bi-axial tensile stress. It has been found the bi-axial tensile strength of a Concrete C20/25 is comparable to its uni-axial strength. In difference, the tensile strength of a Concrete C40/50 is decreased by 25% when subject to bi-axial stress. The ultimate limit stress due to bi-axial tensile stress decreases with increasing ratio of the stress 1 : 2. The Strains 1 and 2 are the strains as a result of the biaxial tensile forces in the main directions. The presented model to describe the strain-stress behaviour of an unreinforced concrete is found to agree well with the observations from the trials. Based on the results of this thesis it is possible to describe the strain-stress behaviour of concrete under bi-axial tensile stress. The stress-strain behaviour of structural elements has been investigated under bi-axial tensile stresses. Strains have been monitored with strain-gauges fixed to the surface of the concrete, to the rebars and to the post-tensioning tendons. Therefore, the influence to the interaction of tendon and concrete has been demonstrated indirectly. Furthermore, it has been shown the strain of the tendon decreases following the development of cracks along the grout tube due to the application of bi-axial tensile stress. It can be concluded the bound of the tendon is influenced adversely by tensile stresses applied in perpendicular direction. Recommendations are given for the application of strain-gauges to measure strains of rebars set in concrete. Based on these trials, the estimation of the critical stress to develop initial cracks has been found in good agreement to the presented criteria.
175

Charakterisierung des mechanischen Verformungsverhaltens von weichelastischen Schaumstoffen unter impulsartigen sportspezifischen Belastungen / Characterization of the mechanical deformation behaviour of flexible foam materials under sport specific impact load

Brückner, Karoline 29 July 2013 (has links) (PDF)
Im Rahmen dieser Arbeit wird ein physikalisches Modell für weichelastische EVA-Schaumstoffe entwickelt, das das mechanische Verformungsverhalten (Spannungs-Verformungs-Kurve) bei der Interaktion zwischen Sportler und Sportgerät am Beispiel eines Laufschuhs anwendungsgerecht – d.h. bei hoher Verformung und Belastungsgeschwindigkeit – kennzeichnet. Im Stand der Technik werden als Einflussfaktoren auf das mechanische Verformungsverhalten von Weichschäumen die Parameter Schaumdichte, Zellgröße bzw. Zelldurchmesser, Schaumhärte und Verformungsgeschwindigkeit ermittelt. Diese werden für die vorliegenden vier Versuchsmaterialien analysiert, wobei die letzten zwei Parameter im Modell Berücksichtigung finden. Das Modell setzt sich aus einem Matrix- und einem Gasphasenanteil zusammen. Der Matrixphasenanteil wird experimentell bei der jeweiligen Verformungsgeschwindigkeit bestimmt, wohingegen der Gasphasenanteil der in den Zellen komprimierten Luft auf einem physikalischen Zusammenhang beruht und anhand der gemessenen Schaumhärte und des Atmosphärendrucks bei der jeweiligen Verformung berechnet wird. Die Voraussetzungen für die Verwendung des Modells, zu denen inkompressible Matrixphase, Geschlossenzelligkeit und keine Querausdehnung des Schaums zählen, werden vorab umfangreich geprüft. Zusammenfassend lässt sich aussagen, dass das gewählte Modell eine gute Übereinstimmung mit den experimentell bestimmten Ergebnissen erzielt. Dies wird anhand der Mittelwertes der Differenz von experimentell ermittelten zu modellierten Daten bestimmt, für den ein Wert von 7 % berechnet wird. / The purpose of this doctoral thesis is developing a physical model for flexible foam materials (e.g. ethylene/vinyl acetate foam) characterizing the mechanical deformation behavior (stress-strain-curve) at the interaction between athlete and sports equipment (e.g. running footwear) during high deformation and high loading rate. Previous studies described various parameters influencing the mechanical deformation behavior of flexible foams: foam density, cell size / cell diameter, foam hardness and loading rate. These parameters are being analyzed for the four present foams whereof the last two parameters were considered in the model. The model consists of a matrix phase measured experimentally at required loading rate multiplied with a correction factor and a gas phase of the air compressed in the foam cells which is calculated by atmospheric pressure and foam hardness. The requirements (incompressible matrix phase, closed cells and zero Poisson ratio) for using the model are verified first of all. In conclusion, the developed model presents a good accordance with the experimental data calculated by a mean difference between experimental and modeled data of 7 %.
176

Beton unter mehraxialer Beanspruchung / Concrete under multiaxial loading conditions / Ein Materialgesetz für Hochleistungsbetone unter Kurzzeitbelastung

Speck, Kerstin 21 July 2008 (has links) (PDF)
Diese Arbeit basiert auf der Untersuchung von hochfesten und ultrahochfesten Betonen mit und ohne Fasern unter zwei- und dreiaxialer Druckbeanspruchung. Die Auswirkung der unterschiedlichen Betonzusammensetzung ist für verschiedene Beanspruchungen nicht gleich ausgeprägt, dennoch konnten grundlegende Zusammenhänge herausgearbeitet werden. Anhand der Bruchbilder konnten die drei Versagensmechanismen Druck-, Spalt- und Schubbruch identifiziert werden, deren Charakteristik über die Kalibrierung an vier speziellen Versuchswerten direkt in das Bruchkriterium einfließen. Dieses stellt eine Erweiterung der Formulierung von OTTOSEN dar, so dass das spröde und z. T. anisotrope Verhalten von Hochleistungsbeton berücksichtigt wird. Die beobachteten Spannungs-Dehnungs-Verläufe korrelieren mit den Versagensformen. Deshalb wird ein Stoffgesetz getrennt für den Druck- und den Zugmeridian aufgestellt, dessen Parameter sich mit zunehmendem hydrostatischen Druck verändern. In die Anfangswerte fließen die Betonzusammensetzung und herstellungsbedingte Anisotropien ein. Die lastinduzierte Anisotropie infolge einer gerichteten Mikrorissbildung wird in dem vorgestellten Stoffgesetzt über richtungsabhängige Parameter ebenfalls berücksichtigt.
177

Verformungsverhalten und Grenzflächen von Ultrahochleistungsbeton unter mehraxialer Beanspruchung / Deformation Behaviour and Hypersurfaces of Ultra High Performance Concrete under Multiaxial Loading

Ritter, Robert 14 April 2014 (has links) (PDF)
Treten im Beton mehraxiale Spannungszustände auf, führen diese gegenüber einer einaxialen Beanspruchung zu einer signifikanten Änderung des Materialverhaltens. Neben einer festigkeitssteigernden bzw. -abmindernden Wirkung ergeben sich ebenfalls große Unterschiede im Spannungs-Dehnungs-Verhalten. Zur effizienten Konzipierung von Betonstrukturen unter komplexen Beanspruchungszuständen ist daher die Kenntnis des veränderten Materialverhaltens notwendig. Zur experimentellen Bestimmung des Spannungs-Dehnungs-Verhaltens eines Ultrahochleistungsbetons mit einer einaxialen Druckfestigkeit von über 170 N/mm² wurden mehraxiale Belastungsversuche an würfelförmigen Probekörpern durchgeführt. Die Untersuchung umfasste insgesamt 35 zwei- und dreiaxiale Spannungsverhältnisse unter proportionaler Laststeigerung mit vorrangiger Betrachtung von Zug-Druck-Druck-Beanspruchungen. Für die Einleitung der Zugbeanspruchungen in die Prüfkörper wurde eine neue Methode entwickelt, bei der mittels einbetonierter Schrauben die Belastung auf den Beton übertragen wird. Die Bestimmung des Verformungsverhaltens erfolgte im Inneren der Probekörper mit sechs tetraederförmig angeordneten Faser-Bragg-Gittern. Die somit direkt gemessenen Dehnungen ermöglichen die nachträgliche Berechnung der Komponenten des Dehnungstensors des Bezugskoordinatensystems. Für den untersuchten Ultrahochleitsungsbeton fallen die auf die einaxiale Druckfestigkeit bezogenen mehraxialen Festigkeitswerte mit zunehmendem hydrostatischen Druckspannungsanteil der Beanspruchung geringer aus als bei Normalbetonen. Weiterhin weist das Verformungsverhalten eine größere Sprödigkeit gegenüber Normalbetonen auf, so dass auch unter dreiaxialen Druckspannungszuständen die Probekörper schlagartig versagen. Aus den gemessenen Spannungs-Dehnungs-Linien werden neben den maximalen Festigkeiten die Festigkeitswerte an der Elastizitätsgrenze, der Affinitätsgrenze sowie beim Volumenminimum der Probekörper bestimmt. Zur Approximation dieser charakteristischen Werte wurde eine Grenzflächenbeschreibung entwickelt und an den Versuchsergebnissen kalibriert. Des Weiteren erfolgte die Zusammenstellung einer Datenbank mit in der Literatur verfügbaren mehraxialen maximalen Festigkeitswerten von Betonen mit einaxialen Druckfestigkeiten von 10 N/mm² bis 180 N/mm² und die Kalibrierung des entwickelten Modells zur Grenzflächenbeschreibung in Abhängigkeit der einaxialen Druckfestigkeit. Die bei der Kalibrierung der Grenzfläche für einzelne Betonfestigkeitsklassen bestimmten Freiwerte hängen dabei stark von den vorliegenden Versuchsdaten und speziell vom Wertebereich der hydrostatischen Spannungsanteile der maximalen Beanspruchungen ab. Die Approximation des Spannungs-Dehnungs-Verhaltens der mehraxial beanspruchten Probekörper erfolgt mittels eines schädigungsbasierten Materialgesetzes. Hierbei wird für den anfänglich isotropen Beton zum einen eine lastinduzierte isotrope Schädigung und zum anderen eine lastinduzierte orthotrope Schädigung angenommen, die von den auftretenden Hauptdehnungen abhängig ist. Mit dem entwickelten Materialgesetz werden sehr gute Übereinstimmungen mit den gemessenen Spannungs-Dehnungs-Linien erreicht, so dass sich ebenfalls eine gute Vorhersage der maximalen Festigkeitswerte ergibt. / Concrete under multiaxial stress states shows significant changes of the material behaviour compared to uniaxial loading. Besides strength increasing and decreasing effects, also great differences in the stress-strain behaviour occur. In order to design concrete structures efficiently concerning complex stress states, the knowledge about the modified material behaviour is necessary. To determine experimentally the stress-strain behaviour of an ultra high performance concrete with a uniaxial compressive strength of about 170 N/mm², multiaxial loading tests on cubic-shaped specimens were carried out. Altogether, the investigation contained 35 biaxial and triaxial stress ratios under proportionally increasing load with primarily tension-compression-compression loadings. Applying the tensile load on the specimen, a new method was developed, which uses screws embedded in the concrete to transfer the loading. The deformations were measured by using six tetrahedron-shaped arranged Fibre Bragg Gratings inside the concrete specimen. Subsequently, with the directly measured strains the components of the strain tensor of the reference coordinate system could be determined. For the investigated ultra high performance concrete the increase of the multiaxial strength, referring to the uniaxial compressive strength, decreases compared to normal strength concrete with the increasing hydrostatic stress component of the load. Moreover, the deformation behaviour shows an increased brittleness compared to normal strength concrete, so that even under triaxial compressive stress states the specimens fail abruptly. Besides the ultimate strength, from the measured stress-strain curves the strength at the proportional limit, at the limit of affinity as well as at the minimum volume of the specimen is determined. To approximate these characteristic values, a description of a hypersurface is developed and calibrated with the test results. Furthermore, a database with multiaxial ultimate strength values of concretes with uniaxial compressive strengths between 10 N/mm² to 180 N/mm² available from literature was compiled and a calibration of the developed hypersurface model depending on the uniaxial compressive strength was carried out. Thereby, the obtained values of arbitrary parameters of individual concrete strength classes depend severely on the available test results, especially on the range of values of the hydrostatic stress component of the ultimate strength. The approximation of the stress-strain behaviour of the multiaxial loaded specimens is carried out by means of a damage-based material law. For this purpose, concerning the initially isotropic concrete, a load-induced isotropic and orthotropic damage depending on the principle strains is assumed. With the developed material law, very good accordance with the measured stress-strain curves could be achieved, so that also results in a good approximation of the ultimate concrete strength.
178

Erfassung der Einflüsse Temperatur und Porosität für Magnesium-Druckgusslegierungen im Örtlichen Konzept

Fuhrmann, Katrin 12 July 2011 (has links) (PDF)
Mg-Druckgusslegierungen sind aufgrund ihrer geringen Dichte potenzielle Leichtbauwerkstoffe. Ihre Festigkeitseigenschaften werden durch erhöhte Temperatur und die druckgussprozessbedingte Porosität maßgeblich beeinflusst. Zur Auslegung zyklisch belasteter Mg-Druckgussbauteile für eine begrenzte Betriebsdauer kann das Örtliche Konzept verwendet werden. Im Örtlichen Konzept nimmt das zyklische Werkstoffverhalten eine zentrale Rolle ein. Es umfasst das zyklische Verformungsverhalten und das zyklische Ermüdungsverhalten. Zur Beschreibung des zyklischen Werkstoffverhaltens werden die zyklische Spannungs-Dehnungs-Kurve für das Verformungsverhalten und die Dehnungswöhlerlinie für das Ermüdungsverhalten verwendet. Ziel der vorliegenden Arbeit ist es, die Einflüsse Temperatur und Porosität auf das zyklische Werkstoffverhalten der Mg-Druckgusslegierungen AZ91 und AM50 quantitativ zu erfassen. Dazu wird ein objektives Regressionsverfahren ermittelt, mit dem die zyklische Spannungs-Dehnungs-Kurve und die Dehnungs-Wöhler-Linie gemeinsam unter Einhaltung der Kompatibilitätsbedingungen aus den Daten einer Versuchsreihe regressiert werden können. Desweiteren wird eine Methodik entwickelt, mit der Ansätze zur quantitativen Erfassung von Einflüssen auf das zyklische Werkstoffverhalten aus Versuchsdaten abgeleitet werden können. Diese Methodik wird zur Untersuchung der Einflüsse Temperatur und Porosität auf das zyklische Werkstoffverhalten der Mg-Druckgusslegierungen AZ91 und AM50 angewendet. Die Untersuchungsergebnisse und deren Validierungen werden in dieser Arbeit vorgestellt. / Die-cast magnesium alloys are potential light-weight materials due to their low density. Their mechanical properties are significantly affected by elevated temperatures and by porosity, which die castings are especially prone to. The local strain approach can be used for dimensioning cyclically loaded magnesium die castings for a limited service life. The central role of this approach is assigned to the cyclic material behaviour. The cyclic material behaviour includes the cyclic deformation behaviour and the cyclic fatigue behaviour. It is characterized by the stress-strain curve for the cyclic deformation behaviour and by the strain-life curve for the cyclic fatigue behaviour. In the present work the aim is to describe the influence of elevated temperatures and of porosity on the cyclic material behaviour quantitatively. Therefore, a method is developed, which allows an objective and combined regression of the stress-strain curve and the strain-life curve for one test series. Furthermore, a methodology is developed, for deriving a formulation from experimental data to describe an arbitrary influence on the cyclic material behaviour quantitatively. This methodology is used to study the influences of elevated temperature and of porosity on the cyclic material behaviour of the die-cast magnesium alloys AZ91 and AM50. The results of the investigations and their validation are presented in this treatise.
179

Distortional buckling behaviour of cold-formed steel compression members at elevated temperatures

Ranawaka, Thanuja January 2006 (has links)
In recent times, light gauge cold-formed steel sections have been used extensively in residential, industrial and commercial buildings as primary load bearing structural components. This is because cold-formed steel sections have a very high strength to weight ratio compared with thicker hot-rolled steel sections, and their manufacturing process is simple and cost-effective. However, these members are susceptible to various buckling modes including local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. Hence, there is a need to fully evaluate the performance of light gauge cold-formed steel structures under fire conditions. Past fire research has focused heavily on heavier, hot-rolled steel members. The buckling behaviour of light gauge cold-formed steel members under fire conditions is not well understood. The buckling effects associated with thin steels are significant and have to be taken into account in fire safety design. Therefore, a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research program more than 115 tensile coupon tests of light gauge cold-formed steels including two steel grades and five thicknesses were conducted at elevated temperatures. Accurate mechanical properties including the yield strength, elasticity modulus and stress-strain curves were all determined at elevated temperatures since the deterioration of the mechanical properties is one of the major parameters in the structural design under fire conditions. An appropriate stress-strain model was also developed by considering the inelastic characteristics. The results obtained from the tensile coupon tests were then used to predict the ultimate strength of cold-formed steel compression members. In the second phase of this research more than 170 laboratory experiments were undertaken to investigate the distortional buckling behaviour of light gauge coldformed steel compression members at ambient and elevated temperatures. Two types of cross sections were selected with various thicknesses (nominal thicknesses are 0.6, 0.8, and 0.95 mm) and both low and high strength steels (G250 and G550 steels with minimum yield strengths of 250 and 550 MPa). The experiments were conducted at six different temperatures in the range of 20 to 800°C. A finite element model of the tested compression members was then developed and validated with the help of experimental results. The degradation of mechanical properties with increasing temperatures was included in finite element analyses. An extensive series of parametric analyses was undertaken using the validated finite element model to investigate the effect of all the influential parameters such as section geometry, steel thickness and grade, mechanical properties and temperature. The resulting large data base of ultimate loads of compression members subject to distortional buckling was then used to review the adequacy of the current design rules at ambient temperature. The current design rules were reasonably accurate in general, but in order to improve the accuracy further, this research has developed new design equations to determine the ultimate loads of compression members at ambient temperature. The developed equation was then simply modified by including the relevant mechanical properties at elevated temperatures. It was found that this simple modification based on reduced mechanical properties gave reasonable results, but not at higher temperatures. Therefore, they were further modified to obtain a more accurate design equation at elevated temperatures. The accuracy of new design rules was then verified by comparing their predictions with the results obtained from the parametric study. This thesis presents a description of the experimental and numerical studies undertaken in this research and the results including comparison with simply modified current design rules. It describes the laboratory experiments at ambient and elevated temperatures. It also describes the finite element models of cold-formed steel compression members developed in this research that included the appropriate mechanical properties, initial geometric imperfections and residual stresses. Finally, it presents the details of the new design equations proposed for the light gauge coldformed steel compression members subjected to distortional buckling effects at elevated temperatures.
180

Behaviour and design of cold-formed steel compression members at elevated termperatures

Heva, Yasintha Bandula January 2009 (has links)
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.

Page generated in 0.0342 seconds