• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 14
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 29
  • 26
  • 22
  • 16
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Síntese e caracterização de nanopartículas baseadas em óxidos de ferro / Iron oxide based nanoparticles: synthesis and characterization

Duarte, Evandro Luiz 20 June 2005 (has links)
Nanopartículas magnéticas têm importância para diversas áreas do conhecimento incluindo física, química e biologia. A obtenção de nanomateriais com características e formas definidas é um grande desafio para esta área. Neste trabalho, realizou-se dois processos de síntese em micelas reversas (MRs) e acopladas ao processo sol-gel e diversos métodos de caracterização de nanopartículas de óxidos de ferro. A utilização de micelas reversas como nanoreatores foi empregada com o intuito de se obter nanopartículas com tamanho e distribuição controladas. Caracterizamos as soluções micelares com a técnica de Espalhamento de Raios X a Baixos Ângulos (SAXS) das partículas em suspensão e analisamos as nanopartículas do interior das MR após alguns passos de purificação, por termogravimetria, calorimetria de varredura diferencial e análise elementar. Além disso, as propriedades estruturais e morfológicas foram caracterizadas por Difração de Raios X (XRD) e Microscopia Eletrônica de Transmissão (TEM). Suas propriedades magnéticas também foram investigadas usando as técnicas de magnetização (VSM e SQUID) e espectroscopia Mössbauer. As nanopartículas apresentaram tamanhos da ordem de 2 a 4 nanômetros, com pouca cristalinidade e impurezas decorrentes principalmente do surfactante. A estrutura cristalográfica indica que as nanopartículas são de ferridrita. Após tratamento térmico as propriedades destes materiais foram investigadas por XRD, TEM, espectroscopia Mössbauer e VSM. Uma transição de ferridrita para magnetita foi caracterizada com aquecimento. Na segunda parte do trabalho, realizamos várias rotas de síntese de nanopartículas de óxido de ferro por co-precipitação em meio metanólico, com o intuito de determinarmos a condição mais favorável para se criar um recobrimento de sílica na superfície da nanopartícula usando o processo sol-gel. A proporção de 25% metanol:base resultou na condição mais favorável para fazermos o recobrimento das nanopartículas com SiO2 através de reação com tetraetilortosilicato (TEOS). A quantidade de TEOS foi variada na razão em volume de Si em relação ao Fe, seguindo as seguintes proporções 10, 20, 30, 50 e 70%. As caracterizações estruturais, morfológicas e magnética das nanopartículas foram feitas por XRD, espectroscopia de Transformada de Fourier por Infra-Vermelho (FTIR), TEM, espectroscopia de imagem eletrônica (ESI), espectroscopia Mössbauer e medidas de magnetização (VSM), à temperatura ambiente. As partículas com menor concentração de sílica apresentaram cristalinidade com tamanho médio de ~17nm. Além disso, as propriedades magnéticas foram preservadas após o recobrimento, de tal forma que seu comportamento superparamagnético foi ainda observado, com uma redução da magnetização de saturação. A análise do FTIR sugere uma ligação da sílica nas partículas magnéticas, enquanto que as imagens de ESI sugerem que as nanopartículas de óxido de ferro funcionam como moldes para a ligação da sílica. / Magnetic nanoparticles have importance in several areas of knowledge including physics, chemistry and biology. Obtaining nanomaterials with well defined characteristic and shapes is a great challenge for this area of research. In this work two synthetic processes for the synthesis of the magnetic nanoparticles were developed, in reversed micelles and sol-gel chemistry. Reverse micelles were used as nanoreactors with the goal of obtaining nanoparticles with controlled size and distribution. We characterized the nanoparticles in micelle solutions with small angle X-Ray scattering (SAXS) and analyzed the nanoparticles extracted from the reverse micelles after some purification steps using thermogravimetry (TG), differential scanning calorimetry (DSC), microanalysis (CHN). The structural and morphological properties were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The magnetic properties were also investigated by using magnetization techniques (VSM and SQUID) and Mössbauer spectroscopy. The nanoparticles presented sizes ranging from 2 to 4 nanometers, with small cristallinity and impurities due to the presence of surfactants. The nanoparticles were characterized to be ferrihydrite. After heat treatment the properties of these materials were also investigated by XRD, TEM, Mössbauer spectroscopy and VSM. A transition from ferrihydrite to magnetite was characterized. In the second part of the work, we realized several synthetic co-precipitation routes of iron oxides in methanolic media, with the goal of determining the most favorable condition to create a layer of silica into the iron-oxide particle, by using the sol-gel process. The proportion of 25% methanol:base resulted in the most favorable condition to do the recovery of the nanoparticles with SiO2, by the reaction with tetraethylorthosilicate (TEOS). The TEOS amount was varied in the Si to Fe ratio, following the proportions 10, 20, 30, 50 e 70%. The structural characterization of the nanoparticles was done by X-ray diffraction, Fourier Transform Infra-Red spectroscopy (FTIR), transmission electron microscopy with energy filter, electronic imaging spectroscopy (ESI), Mössbauer spectroscopy, magnetization measurements (VSM) at room temperature. The particles with smaller concentration of silica presented cristallinity with average sizes of ~17nm. Also, the magnetic properties were preserved after the covering, and its superparamagnetic behavior was still observed with a reduction of the magnetization saturation. The FTIR analysis show the binding of the silica to the magnetic particles and the ESI images suggest that the iron oxide nanoparticles work as templates for the binding of silica.
52

Simulation des matériaux magnétiques à base Cobalt par Dynamique Moléculaire Magnétique / Simulation of Cobalt base materials using Magnetic Molecular Dynamics

Beaujouan, David 07 November 2012 (has links)
Les propriétés magnétiques des matériaux sont fortement connectées à leur structure cristallographique. Nous proposons un modèle atomique de la dynamique d'aimantation capable de rendre compte de cette magnétoélasticité. Bien que ce travail s'inscrive dans une thématique générale de l'étude des matériaux magnétiques en température, nous la particularisons à un seul élément, le Cobalt. Dans ce modèle effectif, les atomes sont décrits par 3 vecteurs classiques qui sont position, impulsion et spin. Ils interagissent entre eux via un potentiel magnéto-mécanique ad hoc. On s'intéresse tout d'abord à la dynamique de spin atomique. Cette méthode permet d'aborder simplement l'écriture des équations d'évolution d'un système atomique de spins dans lequel la position et l'impulsion des atomes sont gelées. Il est toutefois possible de définir une température de spin permettant de développer naturellement une connexion avec un bain thermique. Montrant les limites d'une approche stochastique, nous développons une nouvelle formulation déterministe du contrôle de la température d'un système à spins.Dans un second temps, nous développons et analysons les intégrateurs géométriques nécessaires au couplage temporel de la dynamique moléculaire avec cette dynamique de spin atomique. La liaison des spins avec le réseau est assurée par un potentiel magnétique dépendant des positions des atomes. La nouveauté de ce potentiel réside dans la manière de paramétrer l'anisotropie magnétique qui est la manifestation d'un couplage spin-orbite. L'écriture d'un modèle de paires étendu de l'anisotropie permet de restituer les constantes de magnétostriction expérimentales du hcp-Co. En considérant un système canonique, où pression et température sont contrôlées, nous avons mis en évidence la transition de retournement de spin si particulière au Co vers 695K.Nous finissons par l'étude des retournements d'aimantation super-paramagnétiques de nanoplots de Co permettant de comparer ce couplage spin-réseau aux mesures récentes. / The magnetic properties of materials are strongly connected to their crystallographic structure. An atomistic model of the magnetization dynamics is developed which takes into account magneto-elasticity. Although this study is valid for all magnetic materials under temperatures, this study focuses only on Cobalt. In our effective model, atoms are described by three classical vectors as position, momentum and spin, which interact via an ad hoc magneto-mechanical potential.The atomistic spin dynamics is first considered. This method allows us to write the evolution equations of an atomic system of spins in which positions and impulsions are first frozen. However, a spin temperature is introduced to develop a natural connection with a thermal bath. Showing the limits of the stochastic approach, a genuine deterministic approach is followed to control the canonical temperature in this spin system.In a second step, several geometrical integrators are developed and analyzed to couple together both the molecular dynamics and atomic spin dynamics schemes. The connection between the spins and the lattice is provided by the atomic positions dependence of the magnetic potential. The novelty of this potential lies in the parameterization of the magnetic anisotropy which originates in the spin-orbit coupling. Using a dedicated pair model of anisotropy, the magnetostrictive constants of hcp-Co are restored. In a canonical system where pressure and temperature are controlled simultaneously, the transition of rotational magnetization of Co is found.Finally the magnetization reversals of super-paramagnetic Co nanodots is studied to quantify the impact of spin-lattice coupling respectively to recent measurements.
53

Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen / Plasticity, deformation induced phenomena and Élinvar properties in antiferromagnetic austenitic FeMnNiCr-base alloys

Geißler, David 19 June 2012 (has links) (PDF)
Hoch manganhaltige Eisenbasislegierungen sind bei Raumtemperatur austenitisch und antiferromagnetisch (afm). Dabei besteht die Besonderheit, dass sich durch Legierung die afm Übergangstemperatur (Néeltemperatur) so einstellen lässt, dass sie nahe Raumtemperatur liegt. FeMn-Basislegierungen zeigen in Abhängigkeit von der Zusammensetzung Transformation Induced Plasticity (TRIP) und/oder Twinning Induced Plasticity (TWIP), d.h. die niedrige Stapelfehlerenergie dieser Legierungen führt zu verformungsinduzierter, metastabiler Phasenbildung (TRIP) bzw. zur Bildung von Verformungszwillingen (TWIP) und dadurch zu außerordentlich hoher Duktilität bei gleichzeitig hoher Verfestigung. Darüber hinaus haben FeMn-Basislegierungen einen ausgeprägten Magnetovolumeneffekt und magnetoelastischen Effekt durch magnetische Ordnung. Daher sind die untersuchten FeMnNiCr-Basislegierungen auch prototypisch für afm Élinvarlegierungen. Da Élinvar jedoch für invariable Elastizität steht, bedingt eine Anwendung als temperaturkompensierte Konstantmodullegierungen die Glättung der ausgeprägten magnetischen Anomalien, die industriell noch in keiner Anwendung realisiert wurde. Der Vorteil dies für eine Anwendung zu erreichen, läge in der Unempfindlichkeit feinmechanischer Bauelemente, gegenüber magnetischen Feldern, die bei den industriell verfügbaren ferromagnetischen Élinvarlegierungen nicht gewährleistet ist. Mit Bezug zu feinmechanischen Schwingsystemen spielen dabei neben der Einstellung der magnetoelastischen Eigenschaften die Prozessierbarkeit, Kaltumformbarkeit und Festigkeit sowie deren wechselseitige Beeinflussung eine große Rolle. Die vorliegende Arbeit befasst sich daher mit der Anwendbarkeit der untersuchten FeMnNiCr-Legierungen. Dabei wurden grundlegende Untersuchungen zur Plastizität durchgeführt, die die mechanische Zwillingsbildung in diesen Legierungen charakterisiert und ein Modell der mechanischen Zwillingsbildung bei kleinen plastischen Dehnungen vorschlägt, das eine Abschätzung der Stapelfehlerenergie erlaubt. Die Untersuchung des Antiferromagnetismus umgeformter Proben zeigt das Auftreten thermoremanenter Magnetisierung (TRM), deren Größe mit dem Umformgrad der untersuchten Proben skaliert. Sie wird den durch Umformdefekte erzeugten unkompensierten Momenten in der afm Spinstruktur zugeschrieben. Diese werden durch eine magnetische Feldkühlung magnetisiert und koppeln durch Austauschwechselwirkung an die umgebende antiferromagnetische Matrix unterhalb der Néeltemperatur. Das komplexe thermomagnetische Verhalten der unkompensierten Momente wird experimentell beschrieben und phänomenologisch gedeutet. Die Weiterentwicklung und Bewertung technischer, ausscheidbarer FeMnNiCrBe- und FeMnNiCr(Ti, Al)-Legierungen wird mit Bezug zu den grundlegenden Untersuchungen dargestellt. Es wird gezeigt, dass die neu entwickelten ausscheidbaren FeMnNiCr(Ti, Al)-Legierungen eine vielversprechende Ausgangsbasis darstellen, afm Élinvarlegierungen technisch umzusetzen. / High manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application.
54

Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

Poudel, Chetan 11 June 2014 (has links)
No description available.
55

Ferromagnetismus bei Raumtemperatur in mehrphasigen (Ga,Mn)N Schichten und Heterostrukturen / Ferromagnetism at room temperature in multiphase (Ga,Mn)N layers and heterostructures

Mai, Dong-Du 15 July 2009 (has links)
No description available.
56

Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen: Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen

Geißler, David 29 May 2012 (has links)
Hoch manganhaltige Eisenbasislegierungen sind bei Raumtemperatur austenitisch und antiferromagnetisch (afm). Dabei besteht die Besonderheit, dass sich durch Legierung die afm Übergangstemperatur (Néeltemperatur) so einstellen lässt, dass sie nahe Raumtemperatur liegt. FeMn-Basislegierungen zeigen in Abhängigkeit von der Zusammensetzung Transformation Induced Plasticity (TRIP) und/oder Twinning Induced Plasticity (TWIP), d.h. die niedrige Stapelfehlerenergie dieser Legierungen führt zu verformungsinduzierter, metastabiler Phasenbildung (TRIP) bzw. zur Bildung von Verformungszwillingen (TWIP) und dadurch zu außerordentlich hoher Duktilität bei gleichzeitig hoher Verfestigung. Darüber hinaus haben FeMn-Basislegierungen einen ausgeprägten Magnetovolumeneffekt und magnetoelastischen Effekt durch magnetische Ordnung. Daher sind die untersuchten FeMnNiCr-Basislegierungen auch prototypisch für afm Élinvarlegierungen. Da Élinvar jedoch für invariable Elastizität steht, bedingt eine Anwendung als temperaturkompensierte Konstantmodullegierungen die Glättung der ausgeprägten magnetischen Anomalien, die industriell noch in keiner Anwendung realisiert wurde. Der Vorteil dies für eine Anwendung zu erreichen, läge in der Unempfindlichkeit feinmechanischer Bauelemente, gegenüber magnetischen Feldern, die bei den industriell verfügbaren ferromagnetischen Élinvarlegierungen nicht gewährleistet ist. Mit Bezug zu feinmechanischen Schwingsystemen spielen dabei neben der Einstellung der magnetoelastischen Eigenschaften die Prozessierbarkeit, Kaltumformbarkeit und Festigkeit sowie deren wechselseitige Beeinflussung eine große Rolle. Die vorliegende Arbeit befasst sich daher mit der Anwendbarkeit der untersuchten FeMnNiCr-Legierungen. Dabei wurden grundlegende Untersuchungen zur Plastizität durchgeführt, die die mechanische Zwillingsbildung in diesen Legierungen charakterisiert und ein Modell der mechanischen Zwillingsbildung bei kleinen plastischen Dehnungen vorschlägt, das eine Abschätzung der Stapelfehlerenergie erlaubt. Die Untersuchung des Antiferromagnetismus umgeformter Proben zeigt das Auftreten thermoremanenter Magnetisierung (TRM), deren Größe mit dem Umformgrad der untersuchten Proben skaliert. Sie wird den durch Umformdefekte erzeugten unkompensierten Momenten in der afm Spinstruktur zugeschrieben. Diese werden durch eine magnetische Feldkühlung magnetisiert und koppeln durch Austauschwechselwirkung an die umgebende antiferromagnetische Matrix unterhalb der Néeltemperatur. Das komplexe thermomagnetische Verhalten der unkompensierten Momente wird experimentell beschrieben und phänomenologisch gedeutet. Die Weiterentwicklung und Bewertung technischer, ausscheidbarer FeMnNiCrBe- und FeMnNiCr(Ti, Al)-Legierungen wird mit Bezug zu den grundlegenden Untersuchungen dargestellt. Es wird gezeigt, dass die neu entwickelten ausscheidbaren FeMnNiCr(Ti, Al)-Legierungen eine vielversprechende Ausgangsbasis darstellen, afm Élinvarlegierungen technisch umzusetzen. / High manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application.
57

THERMAL PROPERTIES OF MAGNETIC NANOPARTICLES IN EXTERNAL AC MAGNETIC FIELD

Lukawska, Anna Beata 30 May 2014 (has links)
No description available.

Page generated in 0.0187 seconds