301 |
Spectral and Spatial Methods for the Classification of Urban Remote Sensing DataFauvel, Mathieu 28 November 2007 (has links) (PDF)
Lors de ces travaux, nous nous sommes intéressés au problème de la classification supervisée d'images satellitaires de<br /> zones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS).<br />Deux stratégies ont été proposées.<br />La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM) <br /> non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale<br /> et l'information spectrale extraites lors de la première phase.\\<br /> La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification,<br /> divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat<br />ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schém<br />a de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé<br />.<br />Les différents résultats sont fusionnés à l'aide d'opérateurs flous.<br />Les méthodes ont été validées sur des images réelles. Des<br />améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature.
|
302 |
Real-time Hand Gesture Detection and Recognition for Human Computer InteractionDardas, Nasser Hasan Abdel-Qader 08 November 2012 (has links)
This thesis focuses on bare hand gesture recognition by proposing a new architecture to solve the problem of real-time vision-based hand detection, tracking, and gesture recognition for interaction with an application via hand gestures. The first stage of our system allows detecting and tracking a bare hand in a cluttered background using face subtraction, skin detection and contour comparison. The second stage allows recognizing hand gestures using bag-of-features and multi-class Support Vector Machine (SVM) algorithms. Finally, a grammar has been developed to generate gesture commands for application control.
Our hand gesture recognition system consists of two steps: offline training and online testing. In the training stage, after extracting the keypoints for every training image using the Scale Invariance Feature Transform (SIFT), a vector quantization technique will map keypoints from every training image into a unified dimensional histogram vector (bag-of-words) after K-means clustering. This histogram is treated as an input vector for a multi-class SVM to build the classifier. In the testing stage, for every frame captured from a webcam, the hand is detected using my algorithm. Then, the keypoints are extracted for every small image that contains the detected hand posture and fed into the cluster model to map them into a bag-of-words vector, which is fed into the multi-class SVM classifier to recognize the hand gesture.
Another hand gesture recognition system was proposed using Principle Components Analysis (PCA). The most eigenvectors and weights of training images are determined. In the testing stage, the hand posture is detected for every frame using my algorithm. Then, the small image that contains the detected hand is projected onto the most eigenvectors of training images to form its test weights. Finally, the minimum Euclidean distance is determined among the test weights and the training weights of each training image to recognize the hand gesture.
Two application of gesture-based interaction with a 3D gaming virtual environment were implemented. The exertion videogame makes use of a stationary bicycle as one of the main inputs for game playing. The user can control and direct left-right movement and shooting actions in the game by a set of hand gesture commands, while in the second game, the user can control and direct a helicopter over the city by a set of hand gesture commands.
|
303 |
Discovering Protein Sequence-Structure Motifs and Two Applications to Structural PredictionTang, Thomas Cheuk Kai January 2004 (has links)
This thesis investigates the correlations between short protein peptide sequences and local tertiary structures. In particular, it introduces a novel algorithm for partitioning short protein segments into clusters of local sequence-structure motifs, and demonstrates that these motif clusters contain useful structural information via two applications to structural prediction. The first application utilizes motif clusters to predict local protein tertiary structures. A novel dynamic programming algorithm that performs comparably with some of the best existing algorithms is described. The second application exploits the capability of motif clusters in recognizing regular secondary structures to improve the performance of secondary structure prediction based on Support Vector Machines. Empirical results show significant improvement in overall prediction accuracy with no performance degradation in any specific aspect being measured. The encouraging results obtained illustrate the great potential of using local sequence-structure motifs to tackle protein structure predictions and possibly other important problems in computational biology.
|
304 |
應用情感分析於輿情之研究-以台灣2016總統選舉為例 / A Study of using sentiment analysis for emotion in Taiwan's presidential election of 2016陳昭元, Chen, Chao-Yuan Unknown Date (has links)
從2014年九合一選舉到今年總統大選,網路在選戰的影響度越來越大,後選人可透過網路上之熱門討論議題即時掌握民眾需求。
文字情感分析通常使用監督式或非監督式的方法來分析文件,監督式透過文件量化可達很高的正確率,但無法預期未知趨勢,耗費人力標注文章。
本研究針對網路上之政治新聞輿情,提出一個混合非監督式與監督式學習的中文情感分析方法,先透過非監督式方法標注新聞,再用監督式方法建立分類模型,驗證分類準確率。
在實驗結果中,主題標注方面,本研究發現因文本數量遠大於議題詞數量造成TFIDF矩陣過於稀疏,使得TFIDF-Kmeans主題模型分類效果不佳;而NPMI-Concor主題模型分類效果較佳但是所分出的議題詞數量不均衡,然而LDA主題模型基於所有主題被所有文章共享的特性,使得在字詞分群與主題分類準確度都優於TFIDF-Kmeans和NPMI-Concor主題模型,分類準確度高達97%,故後續採用LDA主題模型進行主題標注。
情緒傾向標注方面,證實本研究擴充後的情感詞集比起NTUSD有更好的字詞極性判斷效果,並且進一步使用ChineseWordnet 和 SentiWordNet,找出詞彙的情緒強度,使得在網友評論的情緒計算更加準確。亦發現所有文本的情緒指數皆具皆能反應民調指數,故本研究用文本的情緒指數來建立民調趨勢分類模型。
在關注議題分類結果的實驗,整體正確率達到95%,而在民調趨勢分類結果的實驗,整體正確率達到85%。另外建立全面性的視覺化報告以瞭解民眾的正反意見,提供候選人在選戰上之競爭智慧。 / From Taiwanese local elections, 2014 to Taiwan presidential elections, 2016. Network is in growing influence of the election. The nominee can immediately grasp the needs of the people through a popular subject of discussion on the website.
Sentiment Analysis research encompasses supervised and unsupervised methods for analyzing review text. The supervised learning is proved as a powerful method with high accuracy, but there are limits where future trend cannot be recognized, and the labels of individual classes must be made manually.
In the study, we propose a Chinese Sentiment Analysis method which combined supervised and unsupervised learning. First, we used unsupervised learning to label every articles. Secondly, we used supervised learning to build classification model and verified the result.
According to the result of finding subject labeling, we found that TFIDF-Kmeans model is not suitable because of document characteristic. NPMI-Concor model is better than TFIDF-Kmeans model. But the subject words is not balanced. However, LDA model has the feature that all subject is share by all articles. LDA model classification performance can reach 97% accuracy. So we choose it to decide article subject.
According to the result of sentimental labeling, the sentimental dictionary we build has higher accuracy than NTUSD on judging word polarity. Moreover, we used ChineseWordnet and SentiWordNet to calculate the strength of word. So we can have more accuracy on calculate public’s sentiment. So we use these sentiment index to build prediction model.
In the result of subject labeling, our accuracy is 95%. Meanwhile, In the result of prediction our accuracy is 85%. We also create the Visualization report for the nominee to understand the positive and the negative options of public. Our research can help the nominee by providing competitive wisdom.
|
305 |
Graph-based Regularization in Machine Learning: Discovering Driver Modules in Biological NetworksGao, Xi 01 January 2015 (has links)
Curiosity of human nature drives us to explore the origins of what makes each of us different. From ancient legends and mythology, Mendel's law, Punnett square to modern genetic research, we carry on this old but eternal question. Thanks to technological revolution, today's scientists try to answer this question using easily measurable gene expression and other profiling data. However, the exploration can easily get lost in the data of growing volume, dimension, noise and complexity. This dissertation is aimed at developing new machine learning methods that take data from different classes as input, augment them with knowledge of feature relationships, and train classification models that serve two goals: 1) class prediction for previously unseen samples; 2) knowledge discovery of the underlying causes of class differences. Application of our methods in genetic studies can help scientist take advantage of existing biological networks, generate diagnosis with higher accuracy, and discover the driver networks behind the differences. We proposed three new graph-based regularization algorithms. Graph Connectivity Constrained AdaBoost algorithm combines a connectivity module, a deletion function, and a model retraining procedure with the AdaBoost classifier. Graph-regularized Linear Programming Support Vector Machine integrates penalty term based on submodular graph cut function into linear classifier's objective function. Proximal Graph LogisticBoost adds lasso and graph-based penalties into logistic risk function of an ensemble classifier. Results of tests of our models on simulated biological datasets show that the proposed methods are able to produce accurate, sparse classifiers, and can help discover true genetic differences between phenotypes.
|
306 |
Non-intrusive driver drowsiness detection systemAbas, Ashardi B. January 2011 (has links)
The development of technologies for preventing drowsiness at the wheel is a major challenge in the field of accident avoidance systems. Preventing drowsiness during driving requires a method for accurately detecting a decline in driver alertness and a method for alerting and refreshing the driver. As a detection method, the authors have developed a system that uses image processing technology to analyse images of the road lane with a video camera integrated with steering wheel angle data collection from a car simulation system. The main contribution of this study is a novel algorithm for drowsiness detection and tracking, which is based on the incorporation of information from a road vision system and vehicle performance parameters. Refinement of the algorithm is more precisely detected the level of drowsiness by the implementation of a support vector machine classification for robust and accurate drowsiness warning system. The Support Vector Machine (SVM) classification technique diminished drowsiness level by using non intrusive systems, using standard equipment sensors, aim to reduce these road accidents caused by drowsiness drivers. This detection system provides a non-contact technique for judging various levels of driver alertness and facilitates early detection of a decline in alertness during driving. The presented results are based on a selection of drowsiness database, which covers almost 60 hours of driving data collection measurements. All the parameters extracted from vehicle parameter data are collected in a driving simulator. With all the features from a real vehicle, a SVM drowsiness detection model is constructed. After several improvements, the classification results showed a very good indication of drowsiness by using those systems.
|
307 |
Identifying Plankton from Grayscale Silhouette ImagesKramer, Kurt A 27 October 2005 (has links)
Utilizing a continuous silhouette image of marine plankton produced by a device called SIPPER, developed by the Marine Sciences Department, individual plankton images were extracted, features were derived, and classification was performed. There were plankton recognition experiments performed in Support Vector Machine parameter tuning, Fourier descriptors, and feature selection.
Several groups of features were implemented, moments, gramulometric, Fourier transform for texture, intensity histograms, Fourier descriptors for contour, convex hull, and Eigen ratio. The Fourier descriptors were implemented in three different flavors sampling, averaging and hybrid (mix of sampling and averaging).
The feature selection experiments utilized a modified WRAPPER approach of which several flavors were explored including Best Case Next, Forward and Backward, and Beam Search. Feature selection significantly reduced the number of features required for processing, while at the same time maintaining the same level of classification accuracy. This resulted in reduced processing time for training and classification.
|
308 |
Vers une description efficace du contenu visuel pour l'annotation automatique d'imagesHervé, Nicolas 08 June 2009 (has links) (PDF)
Les progrès technologiques récents en matière d'acquisition de données multimédia ont conduit à une croissance exponentielle du nombre de contenus numériques disponibles. Pour l'utilisateur de ce type de bases de données, la recherche d'informations est très problématique car elle suppose que les contenus soient correctement annotés. Face au rythme de croissance de ces volumes, l'annotation manuelle présente aujourd'hui un coût prohibitif. Dans cette thèse, nous nous intéressons aux approches produisant des annotations automatiques qui tentent d'apporter une réponse à ce problème. Nous nous intéressons aux bases d'images généralistes (agences photo, collections personnelles), c'est à dire que nous ne disposons d'aucun a priori sur leur contenu visuel. Contrairement aux nombreuses bases spécialisées (médicales, satellitaires, biométriques, ...) pour lesquelles il est important de tenir compte de leur spécificité lors de l'élaboration d'algorithmes d'annotation automatique, nous restons dans un cadre générique pour lequel l'approche choisie est facilement extensible à tout type de contenu.<br /><br />Pour commencer, nous avons revisité une approche standard basée sur des SVM et examiné chacune des étapes de l'annotation automatique. Nous avons évalué leur impact sur les performances globales et proposé plusieurs améliorations. La description visuelle du contenu et sa représentation sont sans doute les étapes les plus importantes puisqu'elles conditionnent l'ensemble du processus. Dans le cadre de la détection de concepts visuels globaux, nous montrons la qualité des descripteurs de l'équipe Imedia et proposons le nouveau descripteur de formes LEOH. D'autre part, nous utilisons une représentation par sacs de mots visuels pour décrire localement les images et détecter des concepts plus fins. Nous montrons que, parmi les différentes stratégies existantes de sélection de patches, l'utilisation d'un échantillonnage dense est plus efficace. Nous étudions différents algorithmes de création du vocabulaire visuel nécessaire à ce type d'approche et observons les liens existants avec les descripteurs utilisés ainsi que l'impact de l'introduction de connaissance à cette étape. Dans ce cadre, nous proposons une nouvelle approche utilisant des paires de mots visuels permettant ainsi la prise en compte de contraintes géométriques souples qui ont été, par nature, ignorées dans les approches de type sacs de mots. Nous utilisons une stratégie d'apprentissage statistique basée sur des SVM. Nous montrons que l'utilisation d'un noyau triangulaire offre de très bonnes performances et permet, de plus, de réduire les temps de calcul lors des phases d'apprentissage et de prédiction par rapport aux noyaux plus largement utilisés dans la littérature. La faisabilité de l'annotation automatique n'est envisageable que s'il existe une base suffisamment annotée pour l'apprentissage des modèles. Dans le cas contraire, l'utilisation du bouclage de pertinence, faisant intervenir l'utilisateur, est une approche efficace pour la création de modèles sur des concepts visuels inconnus jusque là, ou en vue de l'annotation de masse d'une base. Dans ce cadre, nous introduisons une nouvelle stratégie permettant de mixer les descriptions visuelles globales et par sac de mots.<br /><br />Tous ces travaux ont été évalués sur des bases d'images qui correspondent aux conditions d'utilisation réalistes de tels systèmes dans le monde professionnel. Nous avons en effet montré que la plupart des bases d'images utilisées par les académiques de notre domaine sont souvent trop simples et ne reflètent pas la diversité des bases réelles. Ces expérimentations ont mis en avant la pertinence des améliorations proposées. Certaines d'entre elles ont permis à notre approche d'obtenir les meilleures performances lors de la campagne d'évaluation ImagEVAL.
|
309 |
Real-time Hand Gesture Detection and Recognition for Human Computer InteractionDardas, Nasser Hasan Abdel-Qader 08 November 2012 (has links)
This thesis focuses on bare hand gesture recognition by proposing a new architecture to solve the problem of real-time vision-based hand detection, tracking, and gesture recognition for interaction with an application via hand gestures. The first stage of our system allows detecting and tracking a bare hand in a cluttered background using face subtraction, skin detection and contour comparison. The second stage allows recognizing hand gestures using bag-of-features and multi-class Support Vector Machine (SVM) algorithms. Finally, a grammar has been developed to generate gesture commands for application control.
Our hand gesture recognition system consists of two steps: offline training and online testing. In the training stage, after extracting the keypoints for every training image using the Scale Invariance Feature Transform (SIFT), a vector quantization technique will map keypoints from every training image into a unified dimensional histogram vector (bag-of-words) after K-means clustering. This histogram is treated as an input vector for a multi-class SVM to build the classifier. In the testing stage, for every frame captured from a webcam, the hand is detected using my algorithm. Then, the keypoints are extracted for every small image that contains the detected hand posture and fed into the cluster model to map them into a bag-of-words vector, which is fed into the multi-class SVM classifier to recognize the hand gesture.
Another hand gesture recognition system was proposed using Principle Components Analysis (PCA). The most eigenvectors and weights of training images are determined. In the testing stage, the hand posture is detected for every frame using my algorithm. Then, the small image that contains the detected hand is projected onto the most eigenvectors of training images to form its test weights. Finally, the minimum Euclidean distance is determined among the test weights and the training weights of each training image to recognize the hand gesture.
Two application of gesture-based interaction with a 3D gaming virtual environment were implemented. The exertion videogame makes use of a stationary bicycle as one of the main inputs for game playing. The user can control and direct left-right movement and shooting actions in the game by a set of hand gesture commands, while in the second game, the user can control and direct a helicopter over the city by a set of hand gesture commands.
|
310 |
Extraction de relations en domaine de spécialitéMinard, Anne-Lyse 07 December 2012 (has links) (PDF)
La quantité d'information disponible dans le domaine biomédical ne cesse d'augmenter. Pour que cette information soit facilement utilisable par les experts d'un domaine, il est nécessaire de l'extraire et de la structurer. Pour avoir des données structurées, il convient de détecter les relations existantes entre les entités dans les textes. Nos recherches se sont focalisées sur la question de l'extraction de relations complexes représentant des résultats expérimentaux, et sur la détection et la catégorisation de relations binaires entre des entités biomédicales. Nous nous sommes intéressée aux résultats expérimentaux présentés dans les articles scientifiques. Nous appelons résultat expérimental, un résultat quantitatif obtenu suite à une expérience et mis en relation avec les informations permettant de décrire cette expérience. Ces résultats sont importants pour les experts en biologie, par exemple pour faire de la modélisation. Dans le domaine de la physiologie rénale, une base de données a été créée pour centraliser ces résultats d'expérimentation, mais l'alimentation de la base est manuelle et de ce fait longue. Nous proposons une solution pour extraire automatiquement des articles scientifiques les connaissances pertinentes pour la base de données, c'est-à-dire des résultats expérimentaux que nous représentons par une relation n-aire. La méthode procède en deux étapes : extraction automatique des documents et proposition de celles-ci pour validation ou modification par l'expert via une interface. Nous avons également proposé une méthode à base d'apprentissage automatique pour l'extraction et la classification de relations binaires en domaine de spécialité. Nous nous sommes intéressée aux caractéristiques et variétés d'expressions des relations, et à la prise en compte de ces caractéristiques dans un système à base d'apprentissage. Nous avons étudié la prise en compte de la structure syntaxique de la phrase et la simplification de phrases dirigée pour la tâche d'extraction de relations. Nous avons en particulier développé une méthode de simplification à base d'apprentissage automatique, qui utilise en cascade plusieurs classifieurs.
|
Page generated in 0.04 seconds