• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 22
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 35
  • 30
  • 30
  • 29
  • 29
  • 23
  • 16
  • 14
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An investigation into sinusoidal current output switchmode converters

Britz, Pierre 10 November 2011 (has links)
M.Ing. / The focus of the project is on the design of a variable output current source applied in the testing of circuit breakers. The possibility of the use of high-frequency, switch mode converters for the application, will be investigated. The expectation is the improvement of the system currently in use, with the help of a power electronic converter. For the application, a 1 to 200A adjustable current source must be developed, which will be powered from the 220V, 50Hz network. A number of possible solutions to the problem will be investigated. One of the challenges of the project is that the output of the converter must be a current and not a voltage, which is normally the case. Based on mathematical calculations and practical results, the best possible solution to the problem is obtained. An optimum system is presented, which meets the desired specifications.
22

Řízení svítidla LED / LED luminaire control

Jankovský, Martin January 2021 (has links)
The main topics of the thesis are luminaries based on LED technology and methods for driving them. The aim of theoretical part is to offer basic knowledge about LEDs, their categories, advantages and disadvantages. The basic methods for driving LED modules are also presented. Based on these facts the design of LED switching power supply for street lighting is presented. The aim is to reach high power factor. The function of the devices is presented by examining parts of the power supply.
23

Passive Cancellation of Common-Mode Electromagnetic Interference in Switching Power Converters

Cochrane, Daniel 10 August 2001 (has links)
It is well known that common-mode (CM) conducted electromagnetic interference (EMI) is caused by the common-mode current flowing through the parasitic capacitance of transistors, diodes, and transformers to ground in the power circuit. Because of the potential for interference with other systems as well as governmental regulations, it is necessary to attenuate this noise. Ordinarily this must be accomplished by using a magnetic choke on the input power lines, which can result in large penalties to the overall size, weight, and cost of the completed system. In order to lessen the requirement for this magnetic choke, there has been in recent years a desire to introduce noise cancellation techniques to the area of EMI. This text introduces a method of canceling the common-mode EMI by using a compensating transformer winding and a capacitor. Compared with active cancellation techniques, it is much simpler and requires no additional transistors and gate-drive circuitry since it merely adds a small copper winding and a small capacitor. By using this technique the size of the EMI filter can be reduced, especially for applications requiring high currents. In this thesis a survey of CM noise reduction techniques is presented, encompassing conventional and active cancellation techniques. The new method for passive noise cancellation is presented, which is then applied to families of isolated DC/DC converters, non-isolated DC/DC converters, and DC/AC inverters and motor drives. The method, results, and ramifications of this technique are presented in order of appearance. / Master of Science
24

Heterogeneous Integration in Switchmode Electronics

Tien, Kevin January 2019 (has links)
This dissertation looks closely at deployment of thin-film integrated inductors within power electronics, including details on the state-of-the-art technology for such inductors and related packaging techniques. Design challenges for systems using these inductors are discussed in detail, including the current outlook on magnetics development and the impact of these non-linearities on system design. In particular, this work looks closely at effects often left behind in modern discrete-component-based power module design, such as soft core saturation and significant high-frequency losses. In conjunction with the magnetics, a well-known non-linear controller for buck converters is analyzed in-depth for the first time, using frameworks from variable structure and sliding-mode control. This allows for development of a more profound rationale for the heuristic design guidelines that have been heretofore provided for this class of controllers. To verify the theoretical development, a testbench integrated CMOS front-end for a switched-inductor step-down, or buck converter is used to investigate departures of system behavior from the general wisdom around buck converter performance. Two packaging methodologies are explored for integration, and their impact on the design cycle and module lifetimes are discussed in some detail.
25

Control strategies enabling seamless switching to islanded operation

Zheng, Wei January 2018 (has links)
Significant penetration of distributed generation (DG) and the increasing automation level available for distribution networks have opened an option of splitting a network into subsystems and operating each as an "autonomous island". This is particularly important when a major contingency occurs. However, there are issues and challenges that must be addressed before islanded operation becomes viable, among which, ensuring seamless switching of a distribution subsystem from grid-connected to islanded mode is critically important. Unless the subsystem is a predesigned microgrid, it is highly possible that the subsystem load demand will exceed the generation capacity of island DGs. Therefore, an appropriate load shedding scheme must be implemented to ensure the islanded subsystem is power balanced. In this thesis, a switching control strategy is designed to deliver seamless islanding switching. This strategy comprises a multiple-DG coordination method and a single-step load shedding scheme. Mathematical studies and time-domain simulations that investigate the transients observed during the islanding switching process are both conducted, and together, they are used to address the transient stability issues of an islanded subsystem. This thesis focuses on a distribution subsystem consisting of a mix of synchronous and inverter-based DGs and a combination of static and dynamic loads. DG modelling and control is first introduced, and based on that, various types of method to achieve multiple-DG coordination, including an innovative multiple-master strategy, are investigated. The widely accepted master-slave strategy is used to coordinate DGs when the subsystem is islanded. The strategy demands a single dispatchable and controllable DG, such as a synchronous generator, to be the master, whilst requires the others, such as intermittent renewable-based DGs, to be the slaves. Dynamic load modelling is another critical part of this thesis. The transient stability of dynamic loads after major disturbances is investigated and then used to design the stability-oriented load shedding priority. The single-step load shedding scheme calculates the load shedding amount based on the power flow at the point of common coupling (PCC) and the spinning reserve available in the island. This scheme is activated by the tripping event of the PCC circuit breaker between the grid and the island, and then priorities the load to be shed according to the priority predetermined from the stability perspective. Mathematical analysis is first conducted on a simple subsystem to investigate the impact of DG settings on the islanding transients. A full-scale subsystem is also simulated in PSCAD/EMTDC and used to verify the effectiveness of the switching control strategy. In time-domain simulations, the subsystem is islanded following either a routine switching event or a permanent grid fault. Various factors that may affect the transient performance are analysed, such as the severity of the fault, the DG penetration level, the fault clearance time and the switching control delay. This thesis concludes that based on the proposed switching control strategy, the concept of seamless switching from grid-connected to islanded operation is technically viable.
26

A universal flux/charge modulation strategy for three-phase power electronic converters

Loh, Poh Chiang, 1973- January 2002 (has links)
Abstract not available
27

Delta-Sigma Modulation Applied to Switching RF Power Amplifiers

Andersson, Tobias, Wahlsten, Johan January 2007 (has links)
<p>Background:</p><p>The task of this thesis is to investigate the possibility of using non-linear high efficiency switching power amplifiers with spectrally efficient varying envelope modulation schemes and, if possible, further investigate such a solution on a high level.</p><p>The thesis focuses on the theory necessary to understand the technical issues related to power amplifiers and the procedures behind simulating and measuring the characteristics of different power amplifier configurations. The thesis also covers basic theory behind Delta-Sigma-modulators. The theory is needed to draw conclusions about the feasibility of using a Delta-Sigma-modulator as input to a switching amplifier.</p><p>Results:</p><p>Using a Delta-Sigma-modulated input to a switching amplifier inherently degrades the performance, mainly because of poor coding efficiency and high switching activity. However, by merely using a switching amplifier as a mixer it is shown to be possible to transmit a non-constant envelope signal, with digital logic. The resulting circuit is, however, not an amplifier and it should not be seen as the final result. As already mentioned: the result lies in the investigation of a using Delta-Sigma-modulator as input to a switching amplifier.</p><p>Conclusion:</p><p>From this investigation we believe that the widely known technique: pulse width modulation (PWM), together with a tuned switching amplifier and some linearization technique, for example pre-distortion, is a better way to go. Much effort should be put in understanding the fundamental limits and possibilities of an efficient tuned switching power amplifier.</p>
28

A low cost AC motor drive for battery powered applications

Wiley, Brian 19 August 1993 (has links)
Environmental concerns have renewed the interest in electric vehicles. To gain widespread use, electric vehicles will also have to offer good performance and be reasonably priced. AC drive systems using modern semiconductors can provide efficient operation at the required power levels, but their cost at present is still too high. This paper discusses the development of an AC induction motor drive system which potentially lowers cost by using a digital controller. The controller is shown to implement a high performance field-oriented control, while keeping a low parts count by maximizing use of interface circuits which are integrated onto the microprocessor chip. Cost is further reduced by designing the system to reuse motor control components for battery charging and eliminate the need for external circuits. Experimental results are presented for a low power prototype system. / Graduation date: 1994
29

Three Phase Switched Reluctance Motor Control Using A Flyback Resistor C Dump Converter Control

Huang, Yi-Wen 31 July 2005 (has links)
Switched Reluctance Machine (SRMs) are receiving significant attention for industries and homes in the last decade. Due to their rugged brushless design, high reliable and an outstanding performance over a wide speed range. The stator and rotor of an SRM have a double salient pole and the rotor has no windings and magnets, its torque generating is quite nonlinear and has high torque ripple. Therefore, sophisticated switching and control technologies are needed to improve its driving performance. The cost and performance of SRM drives are highly dependent on the converter topologies and motor structure, so that developments in the convert topologies have been made in parallel with motor design. The objective of this thesis is proposed three phase Switched Reluctance Machine using a fly back resistor C Dump Converter to replace the tradition Bridge Converter. It can reduce switching losses, to reduce converter production cost with a simpler circuit. At the end, a digital signal processor based control system is used to test the laboratory make drives .
30

Delta-Sigma Modulation Applied to Switching RF Power Amplifiers

Andersson, Tobias, Wahlsten, Johan January 2007 (has links)
Background: The task of this thesis is to investigate the possibility of using non-linear high efficiency switching power amplifiers with spectrally efficient varying envelope modulation schemes and, if possible, further investigate such a solution on a high level. The thesis focuses on the theory necessary to understand the technical issues related to power amplifiers and the procedures behind simulating and measuring the characteristics of different power amplifier configurations. The thesis also covers basic theory behind Delta-Sigma-modulators. The theory is needed to draw conclusions about the feasibility of using a Delta-Sigma-modulator as input to a switching amplifier. Results: Using a Delta-Sigma-modulated input to a switching amplifier inherently degrades the performance, mainly because of poor coding efficiency and high switching activity. However, by merely using a switching amplifier as a mixer it is shown to be possible to transmit a non-constant envelope signal, with digital logic. The resulting circuit is, however, not an amplifier and it should not be seen as the final result. As already mentioned: the result lies in the investigation of a using Delta-Sigma-modulator as input to a switching amplifier. Conclusion: From this investigation we believe that the widely known technique: pulse width modulation (PWM), together with a tuned switching amplifier and some linearization technique, for example pre-distortion, is a better way to go. Much effort should be put in understanding the fundamental limits and possibilities of an efficient tuned switching power amplifier.

Page generated in 0.0175 seconds