• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 13
  • 11
  • 10
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Annual Report 2011 - Institute of Radiochemistry

14 March 2012 (has links) (PDF)
The Institute of Radiochemistry (IRC) is one of the seven institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the “Nuclear Safety Research Program” of the Helmholtz Association and focused on the topic “Safety of Nuclear Waste Disposal”. The research objectives are to generate better process understanding and data for the long-term safety analysis of a nuclear waste disposal in the deep geological underground. A better knowledge about the dominating processes essential for radionuclide (actinide) mobilization and immobilization on the molecular level is needed for the assessment of the macroscopic processes which determine the transport and distribution of radioactivity in the environment. Special emphasis is put on the biological mediated transport of long-lived radionuclides in the geosphere and their interaction with different biosystems like biota and human organism for a better calculation of environmental and health risks. Advanced knowledge is needed for description of the processes dominating at the interfaces between geo- and bio-systems related to the distribution of long-lived radionuclides in various bio-systems along the food chain.
12

Annual Report 2009 - Institute of Safety Research

08 December 2010 (has links) (PDF)
The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibnizgemeinschaft). Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme „Nuclear Safety Research“, which is one of the three scientific programmes of FZD. The programme includes two main topics, i. e. “Safety Research for Radioactive Waste Disposal” and “Safety Research for Nuclear Reactors”.
13

Annual Report 2010 - Institute of Radiochemistry

Bernhard, Gert, Foerstendorf, Harald, Richter, Anke, Viehweger, Katrin January 2011 (has links)
At the beginning of 2011, the former Forschungszentrum Dresden-Rossendorf (FZD) was fully integrated into the Helmholtz Association, as Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Therefore, the present Annual Report 2010 of the Institute of Radiochemistry (IRC) is published as the first HZDR-Report. The Institute of Radiochemistry is one of the six Research Institutes of this centre. IRC contributes to the research program “Nuclear Safety Research” in the “Research Field of Energy” and performs basic and applied research in radiochemistry and radioecology. Motivation and background of our research are environmental processes relevant for the installation of nuclear waste repositories, for remediation of uranium mining and milling sites, and for radioactive contaminations caused by nuclear accidents and fallout. Because of their high radiotoxicity and long half-life the actinides are of special interest.
14

Effects of colours, shapes and icons on performance and familiarity

Dambuza, Inga Yola January 2011 (has links)
Occupational injuries and illnesses remain to be a heavy burden on workers and employees in industrial developing and industrially developed societies, and health and safety in workplaces continues to be an important issue for ergonomists. Steps are being taken to stimulate health and safety agendas and to discover ways in which health and safety in industries can be improved. The main responsibility of employers is to provide employees with information, instructions and training that they required to carry out their work tasks in a healthy, practical and safe manner. The role of education as a countermeasure to occupational injury and illness is being re-examined by health and safety practitioners and safety training is being considered as a vital part of accident prevention strategies. Effective training programmes should guarantee that workers possess the skills they require to complete their tasks in a safe and healthy manner. Very little is known about the type and quality of training workers undergo and how that training affects the safety outcomes of companies. There has been an attempt over the past 20 years to increase the research on safety communications and a great deal of this research has been focused on safety warnings; with the greatest attention been placed on the components of safety signs, such as colours, size, shapes and icons. The effects of these components on comprehension with relation to age and education have not received the same amount of attention. The impact of familiarity on safety warnings with respect to age and education has also received very little attention; despite the knowledge that familiarity has been shown to increase the noticing of warnings and the comprehension of safety information. Despite the increase in the research on safety communication, the literature and research in South Africa is scarce. Studies present in South Africa do not encompass the comprehension of safety signs or the ability of individuals with different age and education levels to learn the information included in the signs. Due to the multi-linguistic nature of South Africa and the fact that South Africa is an Industrially Developing Country (IDC) with high levels of illiteracy, issues such as the comprehension of safety information must be addressed. Therefore, the objectives of this study were to investigate the effects of safety sign attributes on learning and familiarity, in subjects that differed in age and education levels. These effects were investigated through measuring the reaction and response times of the different subject groups, as well as the number of components in the safety signs that were recalled correctly. The combined results of these responses were used as a measure for familiarity. A set of signs was designed for the study by the researcher using three different colours, three different shapes, three different icons and text. Certain variables were omitted from some signs to create the test pool and the eight conditions that were tested in a laboratory setting. Each condition contained different components of the designed signs and 60 subjects were used to test these conditions. The subjects were placed in groups according to their age and level of education. Subjects were required to learn a set of 64 signs, either “With Occlusion” or “Without Occlusion”, and asked to recall the meanings of the components in the signs. Reaction time, response time and error rate were measured from the responses. The results showed that the conditions resulted in different reaction times, response times and error rates for all subjects. The signs containing a combination of shapes and text resulted in the best performance. Age and education were found to have a significant effect on various performance criteria as did the method in which the signs were displayed (Occlusion and No Occlusion). The increased repetitions and sessions elicited lower reaction times, response times and error rates. The conclusions drawn from this study suggest that different attributes be considered carefully when subjects are expected to learn and recall information in safety signs. The results also highlighted the need to increase the exposure of individuals to safety signs in order to increase familiarity and ultimately improve the recall and comprehension of the attributes.
15

Annual Report 2009 - Institute of Safety Research

Weiß, F.-P. January 2010 (has links)
The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibnizgemeinschaft). Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme „Nuclear Safety Research“, which is one of the three scientific programmes of FZD. The programme includes two main topics, i. e. “Safety Research for Radioactive Waste Disposal” and “Safety Research for Nuclear Reactors”.
16

TOPFLOW-Experimente, Modellentwicklung und Validierung von CFD-Codes für Wasser-Dampf-Strömungen mit Phasenübergang

Lucas, D., Weiß, F. P. January 2011 (has links)
Das Ziel des Vorhabens bestand in der Ertüchtigung von CFD-Codes für Wasser-Dampf-Strömungen mit Phasenübergang. Während CFD-Verfahren für einphasige Strömungen bereits breite Anwendung in der Industrie finden, steht ein entsprechender Einsatz für Zweiphasenströmungen auf Grund der komplexen Phasengrenzfläche und den davon beeinflussten Wechselwirkungen erst am Anfang. Für die Weiterentwicklung und Validierung geeigneter Schließungsmodelle werden experimentelle Daten mit hoher Orts- und Zeitauflösung benötigt. Solche Daten wurden an der TOPFLOW-Versuchsanlage des HZDR durch Kombination von Experimenten bei praxisnahen Parametern für die Reaktorsicherheit (große Skalen, hohe Drücke und Temperaturen) und innovativer Messtechnik gewonnen. Die Gittersensortechnik, mit der detaillierte Informationen über die Phasengrenzfläche gewonnen werden können, wurde in adiabaten Wasser-Luft-Experimenten sowie Kondensations- und Druckentlastungsexperimenten in einem großen DN200-Rohr eingesetzt. Umfangreiche Datenbasen mit hoher Qualität stehen im Ergebnis des Vorhabens zur Verfügung. Die Technologie für die schnelle Röntgentomographie, die Messungen ohne Strömungsbeeinflussung ermöglicht, wurde weiter entwickelt und in einer ersten Messserie erfolgreich eingesetzt. Hochaufgelöste Daten wurden auch in Experimenten zu verschiedenen Strömungssituationen (z.B. Gegenstrombegrenzung) in einem Modell des heißen Strangs eines Druckwasserreaktors gewonnen. Für die Wasser-Dampf-Experimente bei Drücken von bis zu 5 MPa wurde dabei erstmals die neu entwickelte innovative Drucktanktechnologie eingesetzt. Zur Ertüchtigung von CFD-Codes für Zweiphasenströmungen wurde das Inhomogene MUSIG-Modell für Phasenübergänge in Kooperation mit ANSYS erweitert und anhand der o.g. TOPFLOW-Experimente validiert. Außerdem erfolgten Verbesserungen u.a. für die Turbulenzmodellierung in Blasenströmungen sowie Simulationen zur Validierung der Modelle für Blasenkräfte und Blasenkoaleszenz und -zerfall. Ein wesentlicher Fortschritt wurde bei der Modellierung freier Oberflächen durch die Verallgemeinerung des AIAD-Modells erreicht. Die am Heißstrangmodell ermittelten Flut¬kurven können unter Nutzung dieses Modells in guter Übereinstimmung berechnet werden.
17

Annual Report 2011 - Institute of Radiochemistry

Bernhard, G., Richter, A. January 2012 (has links)
The Institute of Radiochemistry (IRC) is one of the seven institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the “Nuclear Safety Research Program” of the Helmholtz Association and focused on the topic “Safety of Nuclear Waste Disposal”. The research objectives are to generate better process understanding and data for the long-term safety analysis of a nuclear waste disposal in the deep geological underground. A better knowledge about the dominating processes essential for radionuclide (actinide) mobilization and immobilization on the molecular level is needed for the assessment of the macroscopic processes which determine the transport and distribution of radioactivity in the environment. Special emphasis is put on the biological mediated transport of long-lived radionuclides in the geosphere and their interaction with different biosystems like biota and human organism for a better calculation of environmental and health risks. Advanced knowledge is needed for description of the processes dominating at the interfaces between geo- and bio-systems related to the distribution of long-lived radionuclides in various bio-systems along the food chain.
18

Segment and Intersection Crash Analysis Methodologies for Utah Highways

Lunt, Camille Cherie 07 December 2020 (has links)
This research focuses on the Crash Analysis Methodology for Segments (CAMS) which provides a way for engineers at the Utah Department of Transportation (UDOT) to prioritize safety improvements on state-owned roadways. Unlike the Utah crash analysis methodologies that come before it, the CAMS focuses exclusively on segment-related crashes. The benefits of such an analysis can be found in identifying locations that have safety concerns unbiased from intersections and their related crashes. The CAMS uses UDOT data to create a spreadsheet of roadway segments and their associated crashes. Each segment is homogeneous with respect to five variables: Annual Average Daily Traffic (AADT), functional class, number of lanes, speed limit, and urban code. In the statistical analyses performed on the data, four years of crash data (2014-2017) are used to predict distributions of crashes for the most recent year of data (2018). Observed crash counts are compared to the predicted distributions and assigned a percentile value within the distributions, and segments are subsequently ranked in order of safety concern according to those percentiles. Two-page technical reports are created for segments that rank high in the state or UDOT Region. These reports consist of concise tables of roadway data and crash trends pertaining to each segment. Research analysts also add observations made in virtual site visits to the reports. In the end, the results and the reports are sent to UDOT where UDOT Region engineers may review and study identified segments in further detail. This research also includes modifications made to the Intersection Safety Analysis Methodology (ISAM) which focuses exclusively on intersection-related crashes. The modifications made to the ISAM mirror the abilities of the CAMS, thus allowing the pair of methodologies to analyze the entire state route network without overlapping any crash data.
19

Real-Time Monitoring of Healthcare Interventions in Routine Care : Effectiveness and Safety of Newly Introduced Medicines

Cars, Thomas January 2016 (has links)
Before market authorization of new medicines, their efficacy and safety are evaluated using randomized controlled trials. While there is no doubt about the scientific value of randomized trials, they are usually conducted in selected populations with questionable generalizability to routine care.  In the digital data revolution era, with healthcare data growing at an unprecedented rate, drug monitoring in routine care is still highly under-utilized. Although many countries have access to data on prescription drugs at the individual level in ambulatory care, such data are often missing for hospitals. This is a growing problem considering the clear trend towards more new and expensive drugs administered in the hospital setting. The aim of this thesis was therefore to develop methods for extracting data on drug use from a hospital-based electronic health record system and further to build and evaluate models for real-time monitoring of effectiveness and safety of new drugs in routine care using data from electronic health records and regional and national health care registers. Using the developed techniques, we were able to demonstrate drug use and health service utilization for inflammatory bowel disease and to evaluate the comparative effectiveness and safety of antiarrhythmic drugs. With a rapidly evolving drug development, it is important to optimize the evaluation of effectiveness, safety and health economic value of new medicines in routine care. We believe that the models described in this thesis could contribute to fulfil this need.
20

Annual Report 2012 - Institute of Resource Ecology

Brendler, V., Foerstendorf, H., Bok, F., Richter, A. January 2013 (has links)
The Institute of Resource Ecology (IRE) is one of the currently eight institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the program “Nuclear Safety Research” of the Helmholtz Association and focused on the topics “Safety of Nuclear Waste Disposal” and “Safety Research for Nuclear Reactors”. With the integration of the division of “Reactor Safety” from the former “Institute of Safety Research” nuclear research at HZDR is now mainly concentrated within this institute. In addition, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. Here, a knowledge transfer from the nuclear to the non-nuclear community, branching thermodynamics and spectroscopy, has been established. This also strengthens links to the recently established “Helmholtz-Institute Freiberg for Resource Technology”.

Page generated in 0.1076 seconds