Spelling suggestions: "subject:"salvage"" "subject:"salvaged""
31 |
Scrap compiling : using digital technology to manipulate scraps from construction sites in order to create architecturePiriyaprakob, Nutthawut January 2006 (has links)
This project is inspired by two facts that occur on an everyday basis in much of the world. First, it is obvious that many persons and organizations in many developing nations are paying large amounts of money for large-scale architecture projects, including skyscrapers, museums, and airport, subway, and train terminals. It is often the case that as the mega-buildings are built, many useful materials—structural steel, wood, reinforcing rods, sheets of corrugated steel, and concrete among them--are wasted, even though they could be utilized in smaller projects. The second fact is that digital technology is playing a more important role in the daily life of many people and professionals. The development of such technologies also influences the ways in which buildings are created. Many types of software programs now facilitate the standard and non-standard workings of architecture offices worldwide, starting with design, moving through fabrication, and culminating with assembly.It is suggested that we can reuse the scraps from huge construction projects to provide much needed small buildings in the developing world (such as houses or small commercial structures) by using new digital technologies. As the technology becomes available, many architects will be able to adapt and utilize all types of raw materials in the most efficient ways possible while minimizing the amount of waste taken to landfill sites.To advance these ideas, the author worked as an intern at Morphosis and visited the offices of Gehry Partners and Greg Lynn Form (all in Los Angeles), and Sharpies Holden Pasquarelli Architects (SHoP) in New York; these firms are among the most influential offices in the world, both in regards to the buildings they design and the digital technologies with which they work. Rule-based design was studied to better understand the logic of computation. Simultaneously, several experimental projects were designed and built.The knowledge gained from these studies, experiences, and experiments can give us confidence that new technology can help architects and designers organize the complexity of unique scraps for use in the construction of buildings or building components.However, problems were revealed that are in need of attention. For example, the machines that are typically used for digital fabrication procedures today, such as the laser cutter and CNC router, do not provide the best support for this work because they are not intended to be used with scraps and the price of the machine is relatively high.It is hoped that this project can be a small first step for other architects to understand the possibility and the logic of digital technology within the realm of building construction waste. If studied and understood, the new technology can be a very powerful tool to utilize the leftover material in the most efficient way. / Department of Architecture
|
32 |
Re-use of containers for post-disaster housingAli, Aquil Ahmed. January 1975 (has links)
No description available.
|
33 |
INVESTIGATION OF CELL MEDIATED IMMUNITY TO MALARIAYawalak Panpisutchai Unknown Date (has links)
Malaria is a life-threatening parasitic disease endemic throughout the world. Control methods for malaria are becoming less reliable; thus, efforts to develop a safe and effective vaccine are critical. Immunity to malaria requires both cell- and humoral-mediated immunity, CMI and HMI, respectively. CD4+ T cells play a central role in protection against blood stage Plasmodium infection. Given that clinical features of malaria are caused by blood stages, a vaccine against this stage will be very effective in reducing morbidity and mortality. During the blood stage, purine nucleotides, which are essential for parasites’ survival and proliferation, are in high demand. The inability of the parasite to engage in de novo synthesis of purine nucleotides makes the enzyme hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) an essential nutrient salvage enzyme. HGXPRT is located in electron-dense regions in merozoites and in vesicles in the red cell cytoplasm. In contrast to other blood stage antigens, those located on the merozoite surface are targets of HMI. To advance HGXPRT as a malaria vaccine candidate, fermentation and purification of the protein from Plasmodium falciparum (PfHGXPRT) was performed using facilities at Q-Gen, the Queensland Institute of Medical Research (QIMR). Escherichia coli carrying PfHGXPRT gene were a gift in-kind from the University of Queensland (UQ). Recombinant PfHGXPRT expressed in E.coli was purified using anion exchange liquid chromatography and gel filtration techniques. Three methods were used to confirm the Q-Gen PfHGXPRT identity: (1) Western blotting showing identical bands of UQ PfHGXPRT and Q-Gen PfHGXPRT at 26 kDa; (2) N terminal sequencing was compatible with the PfHGXPRT sequence; and (3) mass spectrometry showed homogeneity by giving a subunit molecular mass of 26,231 Da. The purification method used is reproducible and affordable, yielding reasonably pure protein for animal experimentation. Following purification of PfHGXPRT, its efficacy as a subunit vaccine candidate in a rodent model of infection was examined. Multiple rodent models of malaria infection were assessed and it was determined that Plasmodium chabaudi AS (P. chabaudi AS) exhibited the highest cross-reactivity against PfHGXPRT in mice. Hence, P. chabaudi AS was chosen as the appropriate rodent model for study in this thesis. Natural immunity against PfHGXPRT during a blood stage P. chabaudi AS infection was assessed by testing sera and splenocyte responses to PfHGXPRT. IFN- and IL-4, as well as antibodies specific for PfHGXPRT, could be detected after infection, suggesting that PfHGXPRT is a target of natural immunity during the blood stage infection. Therefore, further studies of protective immunity generated by immunisation with PfHGXPRT were conducted, specifically to determine their protective efficacy and to determine immune mechanisms elicited by immunisation. Mice immunised with PfHGXPRT and challenged with P. chabaudi AS developed a slightly reduced parasitaemia. T-cell proliferation, but not antibody responses, was detected after immunisation. Protective mechanism(s) were assessed by adoptively transferring immune CD4+ T cells, B cells or sera to naïve SCID mice followed by parasite challenge. Only recipients of immune CD4+ T cells showed extended survival. Nevertheless, immunisation with PfHGXPRT followed by sub-patent infection induced better protection than immunisation with PfHGXPRT alone, which appeared to be related to CD4+ T cells. Reduction of parasitaemia, as well as augmentation of T cell proliferation and IFN-γ production, was evident in PfHGXPRT and sub-patent infected immunised mice. Recipients of CD4+ T cells from PfHGXPRT and sub-patent infection immune mice also showed some degree of protective immunity. PfHGXPRT was shown to induce natural and acquired immunity to P. chabaudi AS. HGXPRT is highly conserved in parasites and humans; therefore, it is essential to define minimal protective epitopes that could be included in a vaccine. Hence, 22 overlapping peptides (termed P1 P22) corresponding to the entire P. chabaudi AS HGPRT sequence were used to define minimal protective epitopes. Following immunisation of mice with seven pools of peptides (P1 P3, P4 P6, P7 P9, P10 P12, P13 P15, P16 P18 and P19 P22), three immunogenic peptides (P11, P13, and P17), which stimulated significant proliferative and IFN-γ responses were chosen for immunisation studies. Peptide P9 (position 76-95 from N-terminal), which induced the highest IFN- levels during P. chabaudi AS infection was also included in the pool of peptides. Mice immunised with P9, P11, P13 and P17 had significantly decreased parasitaemia. Antibody mediated immunity had a partial effect on suppressing parasite growth. CMI, on the contrary, played a central role in adoptively transferred protection by significantly reducing parasitaemia and prolonging survival of recipient SCID mice. Strong T cell proliferation and IFN- secretion were also detected after stimulation of splenocytes from immune mice with P. chabaudi AS antigen. CMI response was significantly increased after immunisation with the peptides followed by sub-patent infection. The findings that four short epitopes of HG(X)PRT confer strong CMI protection suggest that homologues of such epitopes could be included in a multi-component malaria vaccine.
|
34 |
Analysing the critical design parameters for reuseIbbotson, Scott, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Reuse of components as opposed to material recovery, recycling or disposal has been identified as one of the most efficient EOL strategies for products. The concept behind reuse is that some components and subassemblies have a design life that exceeds the life of the product itself. In order for reuse to be successfully implemented as an EOL strategy, a designer needs to incorporate into a product a philosophy of Design for Reuse (DfRe) at the early design stage. Reliable methods to assess the remaining life of used components based on a products usage life are also required. Furthermore, current industry practices and literature advocate that there is no methodology to decide which parameters need to be redesigned so as to change the life of a selected component to a desired level. The objective of this research is to develop a methodology to assess the reuse potential of product groups based on component failure mechanisms and their associated critical lifetime prediction design parameters. Utilising these clustered groups mathematical models were then developed to establish the useful life of the components for each clustered group. Finally, a means of equating useful life to design life was established and the relationship between, the failure mechanisms, critical lifetime prediction design parameters and design life were represented in graphical format. In order to achieve the proposed objective, Cluster analysis, in particular Group Technology (GT) and Hierarchical clustering were employed to group components with similar failure mechanisms. Following this, multiple linear regression was used to establish mathematical models based on condition monitoring data for each of the clustered groups and their related critical lifetime prediction design parameters. A sensitivity analysis was conducted using the mathematical models, in order to produce graphical relations between the useful life and design parameters of a product. The validity of the suggested methodology was tested on electric motors and a gearbox as both these components have demonstrated great reuse potential. The results demonstrate that the methodology can assist designers in estimating the design life and associated design parameters with great accuracy, and subsequently aiding in a stratagem for reuse.
|
35 |
Analysing the critical design parameters for reuseIbbotson, Scott, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Reuse of components as opposed to material recovery, recycling or disposal has been identified as one of the most efficient EOL strategies for products. The concept behind reuse is that some components and subassemblies have a design life that exceeds the life of the product itself. In order for reuse to be successfully implemented as an EOL strategy, a designer needs to incorporate into a product a philosophy of Design for Reuse (DfRe) at the early design stage. Reliable methods to assess the remaining life of used components based on a products usage life are also required. Furthermore, current industry practices and literature advocate that there is no methodology to decide which parameters need to be redesigned so as to change the life of a selected component to a desired level. The objective of this research is to develop a methodology to assess the reuse potential of product groups based on component failure mechanisms and their associated critical lifetime prediction design parameters. Utilising these clustered groups mathematical models were then developed to establish the useful life of the components for each clustered group. Finally, a means of equating useful life to design life was established and the relationship between, the failure mechanisms, critical lifetime prediction design parameters and design life were represented in graphical format. In order to achieve the proposed objective, Cluster analysis, in particular Group Technology (GT) and Hierarchical clustering were employed to group components with similar failure mechanisms. Following this, multiple linear regression was used to establish mathematical models based on condition monitoring data for each of the clustered groups and their related critical lifetime prediction design parameters. A sensitivity analysis was conducted using the mathematical models, in order to produce graphical relations between the useful life and design parameters of a product. The validity of the suggested methodology was tested on electric motors and a gearbox as both these components have demonstrated great reuse potential. The results demonstrate that the methodology can assist designers in estimating the design life and associated design parameters with great accuracy, and subsequently aiding in a stratagem for reuse.
|
36 |
Archaeology of the iron barque Sepia : an investigation of cargo assemblages /Souter, Corioli. January 2007 (has links)
Thesis (M.A.)--University of Western Australia, 2007.
|
37 |
Ecological effects of post-wildfire management activities (salvage-logging and grass-seeding) on vegetation composition, diversity, biomass, and growth and survival of Pinus ponderosa and Purshia tridentata /Sexton, Timothy Ogden. January 1998 (has links)
Thesis (M.S.)--Oregon State University, 1998. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
|
38 |
A review of the 1989 waste disposal plan /Leung, Carolina. January 1999 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1999. / Includes bibliographical references (leaves 76-78).
|
39 |
CHECK ME : Reducing Waste Trough Salvage CraftsMüllerström, Malin January 2021 (has links)
Textile waste, both pre and post consumer, is a problem that needs a solution, and fast. This work aims to find a simple solution to that problem, to exemplify how a small change in thinking and structures can make a big difference. The proposal is a design system of square construction, with roots in historical fabric conservancy practices and by use of salvage craft techniques. By constructing garments out of squares, waste is eliminated by simple means and existing materials of different qualities can be cut in the same way, thereby rationalized, then assembled into larger materials and so an up cycling process is achieved. The result of this work is a versatile design system which may lead to many different outcomes in the hands of different designers without compromising on desired fit and without the waste generated from cutting conventionally. In the present fashion field solutions such as this system are necessary to encourage the apprehensive designer to take steps towards sustainable practices.
|
40 |
A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. / 食道癌に対する化学放射線療法後または放射線療法後局所遺残再発病変に対するタラポルフィンナトリウムと半導体レーザーを用いた光線力学療法の多施設第II相試験Yano, Tomonori 24 November 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13132号 / 論医博第2136号 / 新制||医||1024(附属図書館) / (主査)教授 溝脇 尚志, 教授 坂井 義治, 教授 山田 泰広 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 1.685 seconds