• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 58
  • 22
  • 13
  • 9
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Water Table and Nutrient Dynamics in Neotropical Savannas and Wetland Ecosystems

Villalobos-Vega, Randol 07 May 2010 (has links)
The Tropical savannas of central Brazil (cerrado) and the Everglades wetland (Florida) ecosystems are ideal systems to study landscape spatial mosaics and their interactions. Both ecosystems show a variety of plant physiognomies distributed within small spatial scales and elevation gradients. Such variety of plant physiognomies provide an opportunity to investigate the roles of climate, topography, nutrient availability and water table dynamics as determinants of plant physiognomic distributions, and their role in shaping regional systems. South Florida Wetlands and the tropical savannas of central Brazil are examples of hydrologically-controlled ecosystems. In hydrologically-controlled ecosystems water sources, the availability of nutrients, and the patterns of water movement play important roles in determining vegetation structure and function. The main objective of this study was to understand ecosystem level processes that shape different physiognomies in two hydrologically-controlled ecosystems. I conducted field work at the IBGE ecological reserve, a field experimental station located in Brasilia, Brazil. I also worked at the Everglades National Park in an area located near the south entrance of the Park in Homestead, Florida. I carried out three interconnected studies investigating water and nutrient dynamics: (1) In a Brazilian savanna I manipulated levels of litter input and measured changes to soil properties, organic matter decomposition and tree growth. I found that changes in litter input affect soil physicochemical properties and soil biochemical processes. I also found that litter dynamics influence tree growth through their effects on soil physicochemical properties. (2) I also studied the effect of water table depth and its temporal variation on spatial patterns of vegetation distribution in the cerrado landscape. I monitored diurnal and seasonal changes in water table depth along two tree-density and topographic gradients. In addition, I measured woody species composition, growth rates of four tree species, litter production, soil nutrients, and nutrient resorption efficiency along those two gradients. I found that water table depth has an important role in determining the spatial distribution of cerrado physiognomies; it also affects tree growth, species composition and nutrient resorption efficiency. (3) In the Everglades I studied patterns of underground water uptake by two vegetation types. I monitored seasonal and diurnal changes in water table depth in a Hammock forest, in a stand dominated by the invasive woody species Schinus terebinthifolius, as well as the water level in an adjacent lake. I estimated stand level transpiration using two different approaches: with sap flow measurements and diurnal oscillations in water table levels. Then, I calculated the total quantity of groundwater withdrawn by evapotranspiration for the wet and dry seasons in the Hammocks and in the exotic invaded site and then compared the results. I found that water uptake by Everglades trees is well coupled to diurnal changes in water table depth and that the amount of water withdrawn from the groundwater was larger during the wet season than during the dry season. Finally, I detected hydrological feedbacks between different vegetation types and nearby bodies of water. Results of this study contributes to the current knowledge of ecosystem level processes in tropical and subtropical ecosystems where water circulation and water availability play a dominant role in shaping vegetation structure and function.
52

Determinants of native and exotic plant species diversity and composition in remnant oak savannas on southeastern Vancouver Island

Lilley, Patrick Ledford 05 1900 (has links)
Many regional and local factors can influence the distribution of native and exotic species in ecological communities. I examined the regional- and local-scale determinants of native and exotic vascular plant species richness and composition in a highly fragmented oak savanna ecosystem on southeastern Vancouver Island. In sharp contrast to most reported results, I found a negative relationship between native and exotic richness at the regional scale, and no relationship at the local scale. Two extrinsic factors, surrounding road density and climate, best explained the regional-scale relationship by each affecting natives and exotics in opposite ways. Road density and climate were also the dominant predictors of native and exotic composition at the regional scale. Patterns in the patch occupancy of individual species confirmed the importance of these factors but I found that low surrounding road densities and cool, wet conditions predicted the presence of many natives and the absence of many exotics. Environmental factors explained variation in richness and composition at the local scale, but these factors were different for natives and exotics. My results suggest that natives and exotics respond to roads and climate in fundamentally different ways. Roads increase both exotic propagule pressure and disturbance, which may facilitate exotic invasion. In contrast, disturbance from roads may increase the likelihood of local extinction for particular natives. Differing climatic preferences within the native and exotic species pools may also partially explain the observed patterns. There was no evidence that native diversity directly affects exotic diversity (or vice versa). Surprisingly, I found that connectivity was not an important predictor of richness or composition despite the high degree of habitat fragmentation in this ecosystem.
53

Determinants of native and exotic plant species diversity and composition in remnant oak savannas on southeastern Vancouver Island

Lilley, Patrick Ledford 05 1900 (has links)
Many regional and local factors can influence the distribution of native and exotic species in ecological communities. I examined the regional- and local-scale determinants of native and exotic vascular plant species richness and composition in a highly fragmented oak savanna ecosystem on southeastern Vancouver Island. In sharp contrast to most reported results, I found a negative relationship between native and exotic richness at the regional scale, and no relationship at the local scale. Two extrinsic factors, surrounding road density and climate, best explained the regional-scale relationship by each affecting natives and exotics in opposite ways. Road density and climate were also the dominant predictors of native and exotic composition at the regional scale. Patterns in the patch occupancy of individual species confirmed the importance of these factors but I found that low surrounding road densities and cool, wet conditions predicted the presence of many natives and the absence of many exotics. Environmental factors explained variation in richness and composition at the local scale, but these factors were different for natives and exotics. My results suggest that natives and exotics respond to roads and climate in fundamentally different ways. Roads increase both exotic propagule pressure and disturbance, which may facilitate exotic invasion. In contrast, disturbance from roads may increase the likelihood of local extinction for particular natives. Differing climatic preferences within the native and exotic species pools may also partially explain the observed patterns. There was no evidence that native diversity directly affects exotic diversity (or vice versa). Surprisingly, I found that connectivity was not an important predictor of richness or composition despite the high degree of habitat fragmentation in this ecosystem.
54

Composition, phenology and restoration of campo rupestre mountain grasslands - Brazil

Le Stradic, Soizig 14 December 2012 (has links) (PDF)
Global environmental changes, especially land-use changes, have profound effects on both ecosystem functioning and biodiversity, having already altered many ecosystem services. These losses emphasize the need to preserve what remains; however when conservation programs are not sufficient, restoring areas that have been destroyed or disturbed can improve conservation efforts and mitigate damages. This work focuses on campos rupestres, Neotropical grasslands found at altitudes, which are part of the Cerrado (Brazilian savannas). They host a great biodiversity with a high level of endemism and, like other mountain ecosystems, provide valuable ecosystem services, such as water purification and recreational services. They have been and still are being impacted by human activities, such as civil engineering construction, quarrying or mining. The first objective of this thesis was to describe the reference ecosystem in order to aim for a clear restoration target and to monitor progress and success. We show that campos rupestres are composed of at least two distinct plant communities (i.e. sandy and stony grasslands), each having a specific composition and structure, hosting a great biodiversity. Several phenological patterns occur among the herbaceous communities: the majority of species flowers and fruits appear during the rainy season but other patterns can be observed. During our 2-year survey, some dominant species belonging to Poaceae, among others, were not observed reproducing, which implies limited chances to disperse on degraded areas. Campo rupestre vegetation is not resilient following a strong disturbance: several years after the disturbance, almost no native species are encountered on the degraded areas, soils are completely altered and seed bank recomposes only with non-target ruderal species. According to the filter model, a local community is a subset of the regional species pool determined by a set of dispersal, abiotic and biotic filters. Acting on the different filters to influence the plant community was the core of our restoration interventions. We then applied three in-situ restoration protocols (hay transfer, species translocation and turf translocation) to restore both kinds of grassland. Hay transfer does not allow the restoration of campo rupestre vegetation because of soil alteration and mainly because of poor seed quality. Indeed, germination studies show that, while some Xyridaceae and Velloziaceae have a high germinability, some dominant Poaceae, Cyperaceae or Asteraceae species have embryoless, unviable or dormant seeds, which makes seeding less efficient. There is no evidence that fire-related cues enhance germination in campos rupestres. Species translocation is successful for only one species, Paspalum erianthum; for the others, root damages probably impede survival. Finally, turf translocation is the most successful method, since numerous species are re-introduced on degraded areas. However due to the low resilience of pristine campos rupestres where turfs are taken from, turf translocation can only be considered in the case of habitat rescue, in circumstances when complete habitat destruction is otherwise unavoidable. Face to the difficulty to restore these peculiar grasslands, the protection and the conservation of campos rupestres must be made a high priority
55

Effects of nutrient-tannin interactions on intake and germination of woody plant species by ruminants

Monegi, Piet 07 1900 (has links)
Woody plant encroachment is one of the major problems worldwide because it affects negatively the herbaceous layer, which provide forage for livestock production. However, the role of ruminants particularly browsers in the dispersal of woody plant seeds still remains a concern for farmers interested in grass production. Seedpods of various woody plant species constitute a crucial part of the diet of herbivores during the dry season because of their high nutritional quality compared to herbaceous material. The interaction of associated diet quality, seed characteristics and animal species among other factors play a pivotal part in the success of livestock faecal seeds dispersion. Furthermore, dispersed seeds that successfully grow into mature woody plants become an important source of protein for herbivores. The use of woody plants as a source forage is known to be limited by plant secondary metabolites (PSMs) such as condensed tannins. The objectives of this study were to determine 1) the effects of condensed tannins and crude protein of Vachellia tortilis and Dichrostachys cinerea pods in seed recovery and germination fed to goats, and 2) the effects of diet mixing on the feed intake of plant species by goats. In the first experiment, a total of 12 female indigenous goats and 12 female Pedi sheep were utilised in this study, with the average body weights of 29.50 kg ± 1.60 (S.E) and 28.70 kg ± 1.60, respectively. Twelve goats were grouped into two groups of six goats per group, one group was fed D. cinerea pods and the other group was fed V. tortilis pods. The group of 12 sheep were divided similarly, the one group was fed D. cinerea pods and the other group was fed V. tortilis pods. Each animal was given V. tortilis and D. cinerea pods at 2.50% of their body weight. All animals were allowed to consume D. cinerea or V. tortilis pods within 24 h, after which the remaining pods were collected and weighed. Faecal collection commenced immediately after the 24 h pods feeding and was carried on until no seeds were discovered in faeces. All faeces extracted from sheep and goats were collected daily in the morning from the faecal bags. In the second experiment, a total of 24 indigenous goats with average body weight of 26.6 kg ± 0.51 were utilised. Goats were arbitrarily selected and grouped into four groups of six goats per group (goats were placed individually in 2 m2 pens). Each group was fed one of the following diets: diet one - Searsia lancea, diet two - S. pyroides, diet three - Euclea crispa and diet four - was a combination of the three plant species (Searsia lancea, S. pyroides and Euclea crispa). Searsia lancea, S. pyroides and E. crispa branches were collected every morning prior to feeding, and were weighed before offering the animals. Refusals were gathered and weighed, and intake was calculated as distinction between weight in and refusals. Plant species foliage were analysed for crude protein, condensed tannin, acid detergent lignin, acid detergent fibre and neutral detergent fibre. During the first experiment, the cumulative percentage seed recovery of V. tortilis from goats (46.00 % ± 1.90) and sheep (52.00 % ± 2.93) was significantly higher than D. cinerea from goats (13 % ± 1.47) and sheep (24.00 % ± 1.16). Germination percentage of D. cinerea seeds that passed through the gastro-intestinal tract of goats (33.12 % ± 2.94) and sheep (36.00 % ± 2.68) was significantly higher than V. tortilis seeds that passed through the gastro-intestinal tract of goats (28.98 % ± 2.68) and sheep (23.04 % ± 2.81). Average D. cinerea (34.56 % ± 1.99) and V. tortilis (26.02 %± 2.10) seeds that went through the gastro-intestinal of goats and sheep had a significantly higher germination rate than the control (i.e. no passage through the gut; D. cinerea = 2.31 % ± 1.55, V. tortilis = 5.07 % ± 2.68). The high mean cumulative percentage seed recovery of V. tortilis (18.80 %) may be attributed to the relatively higher crude protein than D. cinerea (12.20 %). This may encourage animal seed dispersal and germination of woody plant species with relatively high crude protein content. In the second experiment, Searsia lancea contained 8.50 % CP, 21.46 % acid detergent fibre (ADF), 12.50 % ADL and 39.37 % NDF. Searsia pyroides had 9.03 % CP, 27.07 % ADF, 10.89 % ADL and 40.30 % NDF. Euclea crispa had 6.19 % CP, 26.20 % ADF, 16.63 % ADL and 30.02 % NDF. Mixed diet (combination of the three plant species) had 8.96 % CP, 23.72 % ADF, 11.13 % ADL and 38.28 % NDF. Searsia lancea had 2.70 % of CTs while S. pyroides had 5.20 % CT, E. crispa had 6.44 % CT and mixed diet had 7.20 % CT. The mean dry matter intake varied significantly among dietary groups (P < 0.001). Similarly, goats offered a mixed diet consumed more CTs (P < 0.01) than those offered individual forage species. The high mean cumulative percentage seed recovery of V. tortilis may be attributed to the higher crude protein of V. tortilis (18.80 %) than D. cinerea (12.20 %). Higher passage rate may encourage animal seed dispersal and germination of plant species. The results from experiment two support the postulation that animals foraging in mixed diet systems consume more PSMs and achieve higher dry matter intake than animals confined to monocultures or single species feeding systems. Given that woody plant encroachment is already reducing farm-grazing capacities in African savannas and this problem is predicted to double by 2050, strategies that improve herbivore ability to consume woody plants will increase forage availability and inform bush control programmes and policies. Moreover, the concomitant increase in CTs by goats exposed to diets with diverse species also has positive implications for animal / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)
56

Determinants of native and exotic plant species diversity and composition in remnant oak savannas on southeastern Vancouver Island

Lilley, Patrick Ledford 05 1900 (has links)
Many regional and local factors can influence the distribution of native and exotic species in ecological communities. I examined the regional- and local-scale determinants of native and exotic vascular plant species richness and composition in a highly fragmented oak savanna ecosystem on southeastern Vancouver Island. In sharp contrast to most reported results, I found a negative relationship between native and exotic richness at the regional scale, and no relationship at the local scale. Two extrinsic factors, surrounding road density and climate, best explained the regional-scale relationship by each affecting natives and exotics in opposite ways. Road density and climate were also the dominant predictors of native and exotic composition at the regional scale. Patterns in the patch occupancy of individual species confirmed the importance of these factors but I found that low surrounding road densities and cool, wet conditions predicted the presence of many natives and the absence of many exotics. Environmental factors explained variation in richness and composition at the local scale, but these factors were different for natives and exotics. My results suggest that natives and exotics respond to roads and climate in fundamentally different ways. Roads increase both exotic propagule pressure and disturbance, which may facilitate exotic invasion. In contrast, disturbance from roads may increase the likelihood of local extinction for particular natives. Differing climatic preferences within the native and exotic species pools may also partially explain the observed patterns. There was no evidence that native diversity directly affects exotic diversity (or vice versa). Surprisingly, I found that connectivity was not an important predictor of richness or composition despite the high degree of habitat fragmentation in this ecosystem. / Science, Faculty of / Botany, Department of / Graduate
57

Composition, phenology and restoration of campo rupestre mountain grasslands - Brazil / Composition, phenologie et restauration de pelouses d’altitude, les campos rupestres - Brésil. / Composição, fenologia e restauração dos campos rupestres – Brasil

Le Stradic, Soizig 14 December 2012 (has links)
Les changements globaux, notamment les changements d'usage des terres, modifient profondément le fonctionnement des écosystèmes et la biodiversité et, ont déjà impacté de nombreux services écosystémiques. La disparition de ces écosystèmes souligne la nécessité de préserver les zones intactes, et la restauration des zones détruites ou perturbées peut permettre de venir en appui aux efforts de conservation et minimiser les dommages. Ce travail a pour objet d’étude les campos rupestres, des pelouses néotropicales d’altitude, faisant partie du Cerrado (savane brésilienne), qui recèlent une importante biodiversité et qui, comme bien d'autres écosystèmes de montagne, fournissent de précieux services écosystémiques tels que la filtration de l’eau. Ils ont été, et sont encore, grandement affectés par les activités humaines (les travaux de génie civil, les carrières ou les mines). Le premier objectif de cette thèse était de décrire l'écosystème de référence, afin de définir clairement un objectif de restauration et mesurer les progrès et le succès de la restauration. Nous avons montré que les campos rupestres sont composés d'au moins deux communautés végétales distinctes (une avec un substrat caillouteux et l’autre avec un substrat sableux), chacune ayant une composition en espèces et une structure particulières ainsi qu’une grande biodiversité. La phénologie reproductive varie au sein des communautés herbacées: la majorité des espèces fleurissent et fructifient pendant la saison des pluies, d'autres se reproduisent en revanche durant la saison sèche. Tout au long de nos 2 années de suivis phénologiques, certaines espèces dominantes, notamment des Poaceae, n'ont pas été observées en fleur impliquant une dispersion limitée de ces espèces vers les zones dégradées. Les communautés végétales de campos rupestres ne sont pas résilientes aux fortes perturbations: plusieurs années après, presque aucune des espèces cibles n’ont été trouvées en zones dégradées, les sols ont complètement été modifiés et les banques de graines ne se sont recomposées qu’avec des espèces rudérales non désirées. Selon le modèle des filtres, une communauté résulte d’un pool régional d’espèce sélectionné par un ensemble de filtres : de dispersion, abiotique et biotique. Les interventions de restauration mises en place avaient pour but d’agir sur ces différents filtres afin de diriger la dynamique des communautés végétales. Nous avons mis en place trois protocoles de restauration in-situ (le transfert de foin, la translocation d’espèce et la translocation de plaque de végétation) pour restaurer les deux types de communautés de campos rupestres identifiées. Le transfert de foin n’a pas permis la restauration des communautés végétales de campos rupestres en raison de l’importante altération des sols et, surtout, à cause de la mauvaise qualité des graines. En effet, nos études de germination ont montré que, alors que certaines espèces de Xyridaceae et Velloziaceae germent très bien, certaines espèces dominantes de Poaceae, de Cyperaceae ou d’Asteraceae ont des graines soit vides, soit non viables, soit dormantes ; le semis se révèle alors peu efficace. Nous n’avons pas mis en évidence d’effet positif du feu sur la germination des espèces de campos rupestres. La translocation d'espèces s’avère un succès pour une seule espèce, Paspalum erianthum. Pour les autres, les dommages causés au niveau des racines lors de la translocation limitent probablement leur survie. Enfin la translocation de plaques de végétation s’avère être la méthode la plus efficace permettant à de nombreuses espèces d’être réintroduites en zones dégradées. En raison de la faible résilience des campos rupestres dans lesquels les plaques de végétation ont été prélevées, cette méthode ne peut être envisagée que pour sauver des habitats dans le cas extrême où leur destruction est inévitable. Face à la difficulté de restaurer les campos rupestres, leur protection et leur conservation doit être une priorité / Global environmental changes, especially land-use changes, have profound effects on both ecosystem functioning and biodiversity, having already altered many ecosystem services. These losses emphasize the need to preserve what remains; however when conservation programs are not sufficient, restoring areas that have been destroyed or disturbed can improve conservation efforts and mitigate damages. This work focuses on campos rupestres, Neotropical grasslands found at altitudes, which are part of the Cerrado (Brazilian savannas). They host a great biodiversity with a high level of endemism and, like other mountain ecosystems, provide valuable ecosystem services, such as water purification and recreational services. They have been and still are being impacted by human activities, such as civil engineering construction, quarrying or mining. The first objective of this thesis was to describe the reference ecosystem in order to aim for a clear restoration target and to monitor progress and success. We show that campos rupestres are composed of at least two distinct plant communities (i.e. sandy and stony grasslands), each having a specific composition and structure, hosting a great biodiversity. Several phenological patterns occur among the herbaceous communities: the majority of species flowers and fruits appear during the rainy season but other patterns can be observed. During our 2-year survey, some dominant species belonging to Poaceae, among others, were not observed reproducing, which implies limited chances to disperse on degraded areas. Campo rupestre vegetation is not resilient following a strong disturbance: several years after the disturbance, almost no native species are encountered on the degraded areas, soils are completely altered and seed bank recomposes only with non-target ruderal species. According to the filter model, a local community is a subset of the regional species pool determined by a set of dispersal, abiotic and biotic filters. Acting on the different filters to influence the plant community was the core of our restoration interventions. We then applied three in-situ restoration protocols (hay transfer, species translocation and turf translocation) to restore both kinds of grassland. Hay transfer does not allow the restoration of campo rupestre vegetation because of soil alteration and mainly because of poor seed quality. Indeed, germination studies show that, while some Xyridaceae and Velloziaceae have a high germinability, some dominant Poaceae, Cyperaceae or Asteraceae species have embryoless, unviable or dormant seeds, which makes seeding less efficient. There is no evidence that fire-related cues enhance germination in campos rupestres. Species translocation is successful for only one species, Paspalum erianthum; for the others, root damages probably impede survival. Finally, turf translocation is the most successful method, since numerous species are re-introduced on degraded areas. However due to the low resilience of pristine campos rupestres where turfs are taken from, turf translocation can only be considered in the case of habitat rescue, in circumstances when complete habitat destruction is otherwise unavoidable. Face to the difficulty to restore these peculiar grasslands, the protection and the conservation of campos rupestres must be made a high priority
58

Linking Three Decades of International Conservation Funding with South America’s Major Deforestation Areas

Qin, Siyu 17 November 2023 (has links)
Internationale Geldgeber haben die Finanzierung für den Schutz tropischer Wälder erhöht, um der globalen Herausforderung von Klima, Biodiversität und Nachhaltigkeit zu begegnen. Allerdings fehlen subnationale Informationen darüber, wo und wie die Gelder verteilt werden, welche Faktoren die Finanzierung beeinflussen und wie sie mit der Dynamik der Wälder und geschützten Gebiete korrelieren. Diese Thesis beabsichtigt, diese Fragen zu beantworten, indem sie sich mit drei Jahrzehnten internationaler Naturschutzfinanzierung in den Hauptabholzungsgebieten Südamerikas auseinandersetzt. Mithilfe gemischter Methoden habe ich die Interessen der Geldgeber thematisch und geografisch kartiert, räumliche Determinanten der Mittelvergabe identifiziert und Schwankungen der Finanzierung über Standorte und Zeit hinweg mit der Dynamik der Waldbedeckung und geschützten Gebiete verknüpft. Die Ergebnisse zeigten, dass die internationale Naturschutzfinanzierung eine Mischung aus global relevanten Interessen und bilateralen Interessen darstellt, ermöglicht durch sozioökonomische und biophysikalische Verbindungen zwischen den spendenden und empfangenden Regionen. Trockenwaldökosysteme mit hoher Abholzungsrate waren besonders unterfinanziert und gefährdeten die Ökosysteme, Arten und die lokale Bevölkerung. Die Verknüpfung von Schutzgebieten und Finanzierung mit dem Konzept der Landnutzungsdynamik enthüllte weitere Nuancen und half, kontextspezifische Empfehlungen zu identifizieren. Diese Studie präsentierte die erste subnationale Analyse der internationalen Naturschutzfinanzierung auf kontinentaler Ebene, zeigte Übereinstimmungen und Diskrepanzen zwischen den zugeteilten Ressourcen und den Naturschutzbedürfnissen und beleuchtete die komplexe und dynamische Landschaft der Finanzierungsmöglichkeiten, mit der andere Akteure umgehen müssen. / International donors have increased funding for tropical forest conservation to address the global challenge of climate, biodiversity, and sustainability. However, subnational information on where and how funds are allocated, factors influencing funding, and its correlation with forest dynamics and protected areas is lacking. This thesis aims to answer these questions by delving into three decades of international conservation funding in South America’s major deforestation areas. Using mixed methods, I mapped donor interests thematically and geographically, identify spatial determinants of funding allocation, and link funding variations across locations and time with forest cover and protected areas dynamics. Results found that international conservation funding carried a mix of globally relevant interests and bilateral interests enabled by socio-economic and biophysical connections between the donating and receiving regions. Dry forest ecoregions with high deforestation rates have been particularly underfunded, threatening the ecosystems, species, and local people depending on them. Dedicated global biodiversity fund, raising attention to drier ecosystems, targeting highly threatened areas, and making funding more accessible to local actors for local conservation needs, may help address the gap. This study presented the first subnational level analysis of international conservation funding at the continental scale, revealed the matches and mismatches between the allocated resources and the conservation needs, and shed light on the complex and dynamic landscape of funding opportunities that other actors need to navigate in.

Page generated in 0.0316 seconds