• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Studies of Scalar Transport and Mixing in a Turbulent Shear Flow

Behnamian, Amir January 2015 (has links)
High resolution, multi-sensor, hot/cold-wire measurements were made in passively heated, uniformly sheared turbulence in a wind-tunnel. Measurements were focused on terms that are important for modelling of the scalar probability density function (PDF) equation. Unlike previous studies, which considered a single combination of velocity and scalar fields at a time, in this study three different scalar fields were investigated in the same nearly homogeneous turbulence with three passively superimposed temperature fields, namely a transversely homogeneous temperature field with a uniform mean gradient, and two inhomogeneous temperature fields, the plume of a heated line source and a thermal mixing layer. The use of the same uniformly sheared flow allowed the isolation of the effects of scalar inhomogeneity and initial conditions by evaluating the results in the three scalar fields. Thus, the measurements covered a wide range of scalar field conditions and set the ground for a conclusive comparison. For the homogeneous scalar field, results conformed with the literature: the scalar PDF was essentially Gaussian; the conditional expectations of velocities upon the scalar value were approximately linear; and the conditional expectation of the scalar dissipation rate upon the scalar value was mildly anisotropic and had a shape that was similar to those of any of its three parts, which justifies the use of the streamwise part as a surrogate for the total. All these properties behaved very differently in two inhomogeneous scalar fields, the thermal mixing layer and the plume of a heated line source: the scalar PDFs were distinctly sub-Gaussian; the conditional velocity expectations were non-linear functions of the scalar value; and the conditional scalar dissipation rates were very strongly anisotropic, as well as depending on the scalar value in fashions that differed strongly from those of any of their three parts.
2

Direct numerical simulation of gas transfer at the air-water interface in a buoyant-convective flow environment

Kubrak, Boris January 2014 (has links)
The gas transfer process across the air-water interface in a buoyant-convective environment has been investigated by Direct Numerical Simulation (DNS) to gain improved understanding of the mechanisms that control the process. The process is controlled by a combination of molecular diffusion and turbulent transport by natural convection. The convection when a water surface is cooled is combination of the Rayleigh-B´enard convection and the Rayleigh-Taylor instability. It is therefore necessary to accurately resolve the flow field as well as the molecular diffusion and the turbulent transport which contribute to the total flux. One of the challenges from a numerical point of view is to handle the very different levels of diffusion when solving the convection-diffusion equation. The temperature diffusion in water is relatively high whereas the molecular diffusion for most environmentally important gases is very low. This low molecular diffusion leads to steep gradients in the gas concentration, especially near the interface. Resolving the steep gradients is the limiting factor for an accurate resolution of the gas concentration field. Therefore a detailed study has been carried out to find the limits of an accurate resolution of the transport for a low diffusivity scalar. This problem of diffusive scalar transport was studied in numerous 1D, 2D and 3D numerical simulations. A fifth-order weighted non-oscillatory scheme (WENO) was deployed to solve the convection of the scalars, in this case gas concentration and temperature. The WENO-scheme was modified and tested in 1D scalar transport to work on non-uniform meshes. To solve the 2D and 3D velocity field the incompressible Navier-Stokes equations were solved on a staggered mesh. The convective terms were solved using a fourth-order accurate kinetic energy conserving discretization while the diffusive terms were solved using a fourth-order central method. The diffusive terms were discretized using a fourth-order central finite difference method for the second derivative. For the time-integration of the velocity field a second-order Adams-Bashworth method was employed. The Boussinesq approximation was employed to model the buoyancy due to temperature differences in the water. A linear relationship between temperature and density was assumed. A mesh sensitivity study found that the velocity field is fully resolved on a relatively coarse mesh as the level of turbulence is relatively low. However a finer mesh for the gas concentration field is required to fully capture the steep gradients that occur because of its low diffusivity. A combined dual meshing approach was used where the velocity field was solved on a coarser mesh and the scalar field (gas concentration and temperature) was solved on an overlaying finer submesh. The velocities were interpolated by a second-order method onto the finer sub-mesh. A mesh sensitivity study identified a minimum mesh size required for an accurate solution of the scalar field for a range of Schmidt numbers from Sc = 20 to Sc = 500. Initially the Rayleigh-B´enard convection leads to very fine plumes of cold liquid of high gas concentration that penetrate the deeper regions. High concentration areas remain in fine tubes that are fed from the surface. The temperature however diffuses much stronger and faster over time and the results show that temperature alone is not a good identifier for detailed high concentration areas when the gas transfer is investigated experimentally. For large timescales the temperature field becomes much more homogeneous whereas the concentration field stays more heterogeneous. However, the temperature can be used to estimate the overall transfer velocity KL. If the temperature behaves like a passive scalar a relation between Schmidt or Prandtl number and KL is evident. A qualitative comparison of the numerical results from this work to existing experiments was also carried out. Laser Induced Fluorescence (LIF) images of the oxygen concentration field and Schlieren photography has been compared to the results from the 3D simulations, which were found to be in good agreement. A detailed quantitative analysis of the process was carried out. A study of the horizontally averaged convective and diffusive mass flux enabled the calculation of transfer velocity KL at the interface. With KL known the renewal rate r for the so called surface renewal model could be determined. It was found that the renewal rates are higher than in experiments in a grid stirred tank. The horizontally averaged mean and fluctuating concentration profiles were analysed and from that the boundary layer thickness could be accurately monitored over time. A lot of this new DNS data obtained in this research might be inaccessible in experiments and reveal previously unknown details of the gas transfer at the air water interface.
3

Detalhando a solução unidimensional do método OQA com função coeficiente de redução constante aplicado ao transporte escalar interfacial turbulento / Detailing the onedimensional solution of RSW\'s method considering a constant reduction function applied to the turbulent interfacial scalar transport

Gonçalves, Bruno Batista 14 March 2014 (has links)
A adequada quantificação do transporte interfacial de escalares em escoamentos turbulentos é de interesse prático para os processos industriais e para a gestão dos problemas ambientais. O fenômeno é matematicamente complexo devido ao uso de equações governantes estatísticas não lineares e não fechadas. Neste estudo, analisam-se detalhes do método de Ondas Quadradas Aleatórias (OQA), o qual fornece uma quantificação estatística que permite fechar as equações e obter um perfil normalizado da grandeza de interesse para a transferência unidimensional turbulenta de escalares, que, num caso idealizado, depende de apenas dois parâmetros adimensionais, A e k (neste caso, k representa um coeficiente de transferência e A depende da interação entre os fenômenos de transporte molecular e turbulento). Simulações numéricas foram realizadas no intuito de se verificar a influência das derivadas de ordem superior para a função normalizada de concentração. A sensibilidade do modelo e a análise de aspectos intrínsecos ao mesmo foram também realizadas. Importante análise das condições de contorno empregadas foi desenvolvida com a inserção de um contorno adicional, com base física, no seio líquido. Como os estudos iniciais tinham se concentrado em exemplos de transferência de massa, uma extensão para o caso de transporte de calor foi considerada. Os resultados obtidos reproduzem o comportamento dos dados experimentais observados na literatura. / The adequate quantification of interfacial scalar transport in turbulent flows is of practical interest for industrial processes and in environmental problems. The phenomenon is mathematically complex due to the use of unclosed nonlinear statistical equations. In this study, we analyze details of the method of Random Square Waves (RSW), which provides a statistical quantification that allows closing the set of equations and getting the normalized scalar profile of the one-dimensional turbulent scalar variable, which, in an idealized case, depends on only two nondimensional parameters, k and A (in this case, k represents a transfer coefficient and A depends on the interaction between the molecular and turbulent transports). Numerical simulations were performed in order to verify the influence of the higher order of derivatives over the normalized concentration function. The sensitivity of the model to the relevant parameters and the analysis of its intrinsic parameters were also performed. An important aspect is the analysis of the boundary conditions, for which an additional condition was proposed and employed in the bulk liquid (with based on physical grounds). Because the initial studies have focused on examples of mass transfer, an extension to the case of heat transport was here considered. The results reproduce the behavior of experimental data reported in the literature.
4

Quantitative measurements of ablation-products transport in supersonic turbulent flows using planar laser-induced fluorescence

Combs, Christopher Stanley 17 September 2015 (has links)
A recently-developed experimental technique based on the sublimation of naphthalene, which enables imaging of the dispersion of a passive scalar using planar laser-induced fluorescence (PLIF), is applied to a Mach 5 turbulent boundary layer and a NASA Orion capsule flowfield. To enable the quantification of naphthalene PLIF images, quantitative fluorescence and quenching measurements were made in a temperature- and pressure-regulated test cell. The test cell measurements were of the naphthalene fluorescence lifetime and integrated fluorescence signal over the temperature range of 100 K to 525 K and pressure range of 1 kPa to 40 kPa in air. These data enabled the calculation of naphthalene fluorescence yield and absorption cross section over the range of temperatures and pressures tested, which were then fit to simple functional forms for use in the calibration of the PLIF images. Quantitative naphthalene PLIF images in the Mach 5 boundary layer revealed large-scale naphthalene vapor structures that were regularly ejected out to wall distances of approximately y/δ = 0.6 for a field of view that spanned 3δ to 5δ downstream of the trailing edge of the naphthalene insert. The magnitude of the calculated naphthalene mole fraction in these structures at y/δ = 0.2 ranged from approximately 1-6% of the saturation mole fraction at the wind tunnel recovery temperature and static pressure. An uncertainty analysis showed that the uncertainty in the inferred naphthalene mole fraction measurements was ± 20%. Mean mole fraction profiles collected at different streamwise locations were normalized by the mole fraction measured at the wall and a characteristic height of the scalar boundary layer, causing the profiles to collapse into one “universal” mole fraction profile. Two-dimensional fields of naphthalene mole fraction were also obtained simultaneously with velocity by using particle image velocimetry (PIV) and PLIF. The images show large-scale naphthalene vapor structures that coincide with regions of relatively low streamwise velocity. The covariance of naphthalene mole fraction with velocity indicates that an ejection mechanism is transporting low-momentum, high-scalar-concentration fluid away from the wall, resulting in the protrusions of naphthalene vapor evident in the instantaneous PLIF images. Lastly, naphthalene PLIF was used to visualize the dispersion of gas-phase ablation products on a scaled Orion capsule model at four different angles of attack at Mach 5. High concentrations of scalar were imaged in the capsule recirculation region. Additionally, intermittent turbulent structures were visualized on the heat shield surface, particularly for the 12° and 52° AoA cases.
5

Detalhando a solução unidimensional do método OQA com função coeficiente de redução constante aplicado ao transporte escalar interfacial turbulento / Detailing the onedimensional solution of RSW\'s method considering a constant reduction function applied to the turbulent interfacial scalar transport

Bruno Batista Gonçalves 14 March 2014 (has links)
A adequada quantificação do transporte interfacial de escalares em escoamentos turbulentos é de interesse prático para os processos industriais e para a gestão dos problemas ambientais. O fenômeno é matematicamente complexo devido ao uso de equações governantes estatísticas não lineares e não fechadas. Neste estudo, analisam-se detalhes do método de Ondas Quadradas Aleatórias (OQA), o qual fornece uma quantificação estatística que permite fechar as equações e obter um perfil normalizado da grandeza de interesse para a transferência unidimensional turbulenta de escalares, que, num caso idealizado, depende de apenas dois parâmetros adimensionais, A e k (neste caso, k representa um coeficiente de transferência e A depende da interação entre os fenômenos de transporte molecular e turbulento). Simulações numéricas foram realizadas no intuito de se verificar a influência das derivadas de ordem superior para a função normalizada de concentração. A sensibilidade do modelo e a análise de aspectos intrínsecos ao mesmo foram também realizadas. Importante análise das condições de contorno empregadas foi desenvolvida com a inserção de um contorno adicional, com base física, no seio líquido. Como os estudos iniciais tinham se concentrado em exemplos de transferência de massa, uma extensão para o caso de transporte de calor foi considerada. Os resultados obtidos reproduzem o comportamento dos dados experimentais observados na literatura. / The adequate quantification of interfacial scalar transport in turbulent flows is of practical interest for industrial processes and in environmental problems. The phenomenon is mathematically complex due to the use of unclosed nonlinear statistical equations. In this study, we analyze details of the method of Random Square Waves (RSW), which provides a statistical quantification that allows closing the set of equations and getting the normalized scalar profile of the one-dimensional turbulent scalar variable, which, in an idealized case, depends on only two nondimensional parameters, k and A (in this case, k represents a transfer coefficient and A depends on the interaction between the molecular and turbulent transports). Numerical simulations were performed in order to verify the influence of the higher order of derivatives over the normalized concentration function. The sensitivity of the model to the relevant parameters and the analysis of its intrinsic parameters were also performed. An important aspect is the analysis of the boundary conditions, for which an additional condition was proposed and employed in the bulk liquid (with based on physical grounds). Because the initial studies have focused on examples of mass transfer, an extension to the case of heat transport was here considered. The results reproduce the behavior of experimental data reported in the literature.
6

Approximation of scalar and vector transport problems on polyhedral meshes / Approximation des problèmes de transport scalaire et vectoriel sur maillages polyédriques

Cantin, Pierre 14 November 2016 (has links)
Cette thèse étudie, au niveau continu et au niveau discret sur des maillages polyédriques, les équations de transport tridimensionnelles scalaire et vectorielle. Ces équations sont constituées d'un terme diffusif, d'un terme advectif et d'un terme réactif. Dans le cadre des systèmes de Friedrichs, l'analyse mathématique est effectuée dans les espaces du graphe associés aux espaces de Lebesgue. Les conditions de positivité usuelles sur le tenseur de Friedrichs sont étendues au niveau continu et au niveau discret afin de prendre en compte les cas d'intérêt pratique où ce tenseur prend des valeurs nulles ou raisonnablement négatives. Un nouveau schéma convergeant à l'ordre 3/2 est proposé pour le problème d'advection-réaction scalaire en considérant des degrés de liberté scalaires associés aux sommets du maillage. Deux nouveaux schémas considérant également des degrés de libertés aux sommets sont proposés pour le problème de transport scalaire en traitant de manière robuste les différents régimes dominants. Le premier schéma converge à l'ordre 1/2 si les effets advectifs sont dominants et à l'ordre 1 si les effets diffusifs sont dominants. Le second schéma améliore la précision de ce schéma en convergeant à l'ordre 3/2 lorsque les effets advectifs sont dominants. Enfin, un nouveau schéma convergeant à l'ordre 1/2 est obtenu pour le problème d'advection-réaction vectoriel en considérant un seul et unique degré de liberté scalaire sur chaque arête du maillage. La précision et les performances de tous ces schémas sont examinées sur plusieurs cas tests utilisant des maillages polyédriques tridimensionnels / This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes
7

Solids transport in laminar, open channel flow of non-Newtonian slurries

Spelay, Ryan Brent 26 January 2007
Thickened tailings production and disposal continue to grow in importance in the mining industry. In particular, the transport of oil sands tailings is of interest in this study. These tailings must be in a homogeneous state (non-segregating) during pipeline flow and subsequent discharge. Tailings are often transported in an open channel or flume. Slurries containing both clay and coarse sand particles typically exhibit non-Newtonian rheological behaviour. The prediction of the flow behaviour of these slurries is complicated by the limited research activity in this area. As a result, the underlying mechanisms of solids transport in these slurries are not well understood. To address this deficiency, experimental studies were conducted with kaolin clay slurries containing coarse sand in an open circular channel.<p> A numerical model has been developed to predict the behaviour of coarse solid particles in laminar, open channel, non-Newtonian flows. The model involves the simultaneous solution of the Navier-Stokes equations and a scalar concentration equation describing the behaviour of coarse particles within the flow. The model uses the theory of shear-induced particle diffusion (Phillips et al., 1992) to provide a number of relationships to describe the diffusive flux of coarse particles within laminar flows. A sedimentation flux has been developed and incorporated into the Phillips et al. (1992) model to account for gravitational flux of particles within the flow. Previous researchers (Gillies et al., 1999) have shown that this is a significant mechanism of particle migration.<p> The momentum and concentration partial differential equations have been solved numerically by applying the finite volume method. The differential equations are non-linear, stiff and tightly coupled which requires a novel means of analysis. Specific no-flux, no-slip and no-shear boundary conditions have been applied to the channel walls and free surface to produce simulated velocity and concentration distributions. The results show that the model is capable of predicting coarse particle settling in laminar, non-Newtonian, open channel flows. The results of the numerical simulations have been compared to the experimental results obtained in this study, as well as the experimental results of previous studies in the literature.
8

Solids transport in laminar, open channel flow of non-Newtonian slurries

Spelay, Ryan Brent 26 January 2007 (has links)
Thickened tailings production and disposal continue to grow in importance in the mining industry. In particular, the transport of oil sands tailings is of interest in this study. These tailings must be in a homogeneous state (non-segregating) during pipeline flow and subsequent discharge. Tailings are often transported in an open channel or flume. Slurries containing both clay and coarse sand particles typically exhibit non-Newtonian rheological behaviour. The prediction of the flow behaviour of these slurries is complicated by the limited research activity in this area. As a result, the underlying mechanisms of solids transport in these slurries are not well understood. To address this deficiency, experimental studies were conducted with kaolin clay slurries containing coarse sand in an open circular channel.<p> A numerical model has been developed to predict the behaviour of coarse solid particles in laminar, open channel, non-Newtonian flows. The model involves the simultaneous solution of the Navier-Stokes equations and a scalar concentration equation describing the behaviour of coarse particles within the flow. The model uses the theory of shear-induced particle diffusion (Phillips et al., 1992) to provide a number of relationships to describe the diffusive flux of coarse particles within laminar flows. A sedimentation flux has been developed and incorporated into the Phillips et al. (1992) model to account for gravitational flux of particles within the flow. Previous researchers (Gillies et al., 1999) have shown that this is a significant mechanism of particle migration.<p> The momentum and concentration partial differential equations have been solved numerically by applying the finite volume method. The differential equations are non-linear, stiff and tightly coupled which requires a novel means of analysis. Specific no-flux, no-slip and no-shear boundary conditions have been applied to the channel walls and free surface to produce simulated velocity and concentration distributions. The results show that the model is capable of predicting coarse particle settling in laminar, non-Newtonian, open channel flows. The results of the numerical simulations have been compared to the experimental results obtained in this study, as well as the experimental results of previous studies in the literature.
9

Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substances

Rizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
10

Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substances

Rizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.

Page generated in 0.0793 seconds