• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substances

Rizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
12

Development of a CFD model and methodology for the internal flow simulation in a hydrogen-powered UAV / Utveckling av CFD-modell och metodik för intern flödesimulering i vätgasdriven UAV

Porcarelli, Alessandro January 2021 (has links)
In the context of an aviation industry whose top priority is to face the sustainability challenge, the growing civil UAV branch is not an exception. Hydrogen-powered UAVs equipped with PEM (Polymer Electrolyte Membrane) fuel cells are more and more frequently identified as the most convincing and promising technology, particularly for long-endurance mission requirements. However, the onboard carriage of a hydrogen fuel cell leads to unexplored internal flow characteristics, including the introduction of water vapour. The purpose of this master thesis is to develop a valid CFD model and methodology for the internal flow simulation of hydrogen-powered UAVs. Given the strict environmental operational requirements of PEM fuel cells, the intended application of the model is to effectively assess the evolution of the internal bay flow temperature and humidity fields. An explicit-time fourth-order Runge-Kutta projection method is tested successfully on a sample 2D case setup. The case geometry and flow conditions are inspired by the Green Raven UAV project conceived by the Department of Aeronautical and Vehicle Engineering at KTH. / I samband med en flygindustri vars högsta prioritet är att bemöta hållbarhetsutma- ningen är den växande civila UAV-sektorn inget undantag. Vätgasdrivna UAV:er utrustade med PEM (Polymer Electrolyte Membrane) bränsleceller betecknas allt oftare som den mest övertygande och lovande teknologin, särskilt för att de ska kunna utföra långvariga uppdrag. Den ombordgående transporten av en vätebränslecell leder emellertid till outforskade inre flödesfenomen, inklusive alstrad vattenånga. Syftet med detta examensarbete är att utveckla en lämplig CFD-modell och metodik för intern flödesimulering av vätgasdrivna UAV. Med tanke på de strikta miljökraven för PEM-bränsleceller är modellens avsedda tillämpning att eektivt utvärdera utvecklingen av de inre flödestemperaturerna och luftfuktighetsfälten. En tidsexplicit Runge-Kutta-projektionsmetod av fjärde ordningen testas framgångsrikt på ett 2D-exempel. Fallets geometri och flödesförhållanden är inspirerade av Green Raven UAV-projektet som utförts på Farkost och Flyg avdelningen på KTH.
13

Direct numerical simulation of bubbly flows : coupling with scalar transport and turbulence / Simulation numérique directe d’écoulements à bulles : couplage avec le transport de scalaire et la turbulence

Loisy, Aurore 15 September 2016 (has links)
Cette thèse est consacrée aux écoulements homogènes de bulles, ainsi qu'à leur couplage avec le transport d'un scalaire et la turbulence. Elle s'intéresse plus spécifiquement aux effets de taille finie, des interactions hydrodynamiques et de la microstructure de la suspension qui sont étudiés à l'aide de simulations numériques directes à l'échelle d'une seule bulle. La dynamique d'une suspension laminaire de bulles induite par la seule gravité est d'abord revisitée. L'influence de la fraction volumique sur la vitesse de dérive des bulles est établie analytiquement et numériquement pour une suspension parfaitement ordonnée, puis des ressemblances entre suspensions ordonnées et suspensions désordonnées sont mises en évidence. Ces résultats sont ensuite mis à profit pour la modélisation du transport d'un scalaire passif au sein d'une suspension laminaire, tel que décrit par une diffusivité effective tensorielle, et des différences essentielles entre systèmes ordonnés et systèmes désordonnés concernant le transport de scalaire sont mises en exergue. Enfin, la turbulence est prise en compte dans les simulations et son interaction avec une bulle de taille finie est caractérisée. Il est montré que le comportement dynamique d'une bulle de taille comparable à la microéchelle de Taylor ressemble qualitativement à celui d'une microbulle, avec, notamment, une préférence pour certaines régions caractéristiques de l'écoulement. Une définition de l'écoulement vu par la bulle compatible avec les modèles standards de masse ajoutée et de portance est finalement proposée / This thesis is devoted to the study of homogeneous bubbly flows and their coupling with scalar transport and turbulence. It focuses on the effects of finite size, hydrodynamic interactions, and suspension microstructure, which are investigated using direct numerical simulations at the bubble scale. The dynamics of laminar buoyancy-driven bubbly suspensions is first revisited. More specifically, the effect of volume fraction on the bubble drift velocity is clarified by connecting numerical results to theory for dilute ordered systems, and similarities between perfectly ordered and free disordered suspensions are evidenced. These results are then used for the modeling of passive scalar transport in laminar suspensions as described by an effective diffusivity tensor, and crucial differences between ordered and disordered systems with respect to scalar transport are highlighted. Lastly, turbulence is included in the simulations, and its interaction with a finite-size bubble is characterized. The behavior of a bubble as large as Taylor microscale is shown to share a number of common features with that of a microbubble, most notably, the flow sampled by the bubble is biased. A definition of the liquid flow seen by the bubble, as it enters in usual models for the added mass and the lift forces, is finally proposed

Page generated in 0.0893 seconds