• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 9
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 77
  • 77
  • 72
  • 24
  • 20
  • 18
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Adaptive Fault Tolerance Strategies for Large Scale Systems

George, Cijo January 2012 (has links) (PDF)
Exascale systems of the future are predicted to have mean time between node failures (MTBF) of less than one hour. At such low MTBF, the number of processors available for execution of a long running application can widely vary throughout the execution of the application. Employing traditional fault tolerance strategies like periodic checkpointing in these highly dynamic environments may not be effective because of the high number of application failures, resulting in large amount of work lost due to rollbacks apart from the increased recovery overheads. In this context, it is highly necessary to have fault tolerance strategies that can adapt to the changing node availability and also help avoid significant number of application failures. In this thesis, we present two adaptive fault tolerance strategies that make use of node failure pre-diction mechanisms to provide proactive fault tolerance for long running parallel applications on large scale systems. The first part of the thesis deals with an adaptive fault tolerance strategy for malleable applications. We present ADFT, an adaptive fault tolerance framework for long running malleable applications to maximize application performance in the presence of failures. We first develop cost models that consider different factors like accuracy of node failure predictions and application scalability, for evaluating the benefits of various fault tolerance actions including check-pointing, live-migration and rescheduling. Our adaptive framework then uses the cost models to make runtime decisions for dynamically selecting the fault tolerance actions at different points of application execution to minimize application failures and maximize performance. Simulations with real and synthetic failure traces show that our approach outperforms existing fault tolerance mechanisms for malleable applications yielding up to 23% improvement in work done by the application in the presence of failures, and is effective even for petascale and exascale systems. In the second part of the thesis, we present a fault tolerance strategy using adaptive process replication that can provide fault tolerance for applications using partial replication of a set of application processes. This fault tolerance framework adaptively changes the set of replicated processes (replicated set) periodically based on node failure predictions to avoid application failures. We have developed an MPI prototype implementation, PAREP-MPI that allows dynamically changing the replicated set of processes for MPI applications. Experiments with real scientific applications on real systems have shown that the overhead of PAREP-MPI is minimal. We have shown using simulations with real and synthetic failure traces that our strategy involving adaptive process replication significantly outperforms existing mechanisms providing up to 20% improvement in application efficiency even for exascale systems. Significant observations are also made which can drive future research efforts in fault tolerance for large and very large scale systems.
42

Résolution de grands problèmes en optimisation stochastique dynamique et synthèse de lois de commande / Solving large-scale dynamic stochastic optimization problems

Girardeau, Pierre 17 December 2010 (has links)
Le travail présenté ici s'intéresse à la résolution numérique de problèmes de commande optimale stochastique de grande taille. Nous considérons un système dynamique, sur un horizon de temps discret et fini, pouvant être influencé par des bruits exogènes et par des actions prises par le décideur. L'objectif est de contrôler ce système de sorte à minimiser une certaine fonction objectif, qui dépend de l'évolution du système sur tout l'horizon. Nous supposons qu'à chaque instant des observations sont faites sur le système, et éventuellement gardées en mémoire. Il est généralement profitable, pour le décideur, de prendre en compte ces observations dans le choix des actions futures. Ainsi sommes-nous à la recherche de stratégies, ou encore de lois de commandes, plutôt que de simples décisions. Il s'agit de fonctions qui à tout instant et à toute observation possible du système associent une décision à prendre. Ce manuscrit présente trois contributions. La première concerne la convergence de méthodes numériques basées sur des scénarios. Nous comparons l'utilisation de méthodes basées sur les arbres de scénarios aux méthodes particulaires. Les premières ont été largement étudiées au sein de la communauté "Programmation Stochastique". Des développements récents, tant théoriques que numériques, montrent que cette méthodologie est mal adaptée aux problèmes à plusieurs pas de temps. Nous expliquons ici en détails d'où provient ce défaut et montrons qu'il ne peut être attribué à l'usage de scénarios en tant que tel, mais plutôt à la structure d'arbre. En effet, nous montrons sur des exemples numériques comment les méthodes particulaires, plus récemment développées et utilisant également des scénarios, ont un meilleur comportement même avec un grand nombre de pas de temps. La deuxième contribution part du constat que, même à l'aide des méthodes particulaires, nous faisons toujours face à ce qui est couramment appelé, en commande optimale, la malédiction de la dimension. Lorsque la taille de l'état servant à résumer le système est de trop grande taille, on ne sait pas trouver directement, de manière satisfaisante, des stratégies optimales. Pour une classe de systèmes, dits décomposables, nous adaptons des résultats bien connus dans le cadre déterministe, portant sur la décomposition de grands systèmes, au cas stochastique. L'application n'est pas directe et nécessite notamment l'usage d'outils statistiques sophistiqués afin de pouvoir utiliser la variable duale qui, dans le cas qui nous intéresse, est un processus stochastique. Nous proposons un algorithme original appelé Dual Approximate Dynamic Programming (DADP) et étudions sa convergence. Nous appliquons de plus cet algorithme à un problème réaliste de gestion de production électrique sur un horizon pluri-annuel. La troisième contribution de la thèse s'intéresse à une propriété structurelle des problèmes de commande optimale stochastique : la question de la consistance dynamique d'une suite de problèmes de décision au cours du temps. Notre but est d'établir un lien entre la notion de consistance dynamique, que nous définissons de manière informelle dans le dernier chapitre, et le concept de variable d'état, qui est central dans le contexte de la commande optimale. Le travail présenté est original au sens suivant. Nous montrons que, pour une large classe de modèles d'optimisation stochastique n'étant pas a priori consistants dynamiquement, on peut retrouver la consistance dynamique quitte à étendre la structure d'état du système / This work is intended at providing resolution methods for Stochastic Optimal Control (SOC) problems. We consider a dynamical system on a discrete and finite horizon, which is influenced by exogenous noises and actions of a decision maker. The aim is to minimize a given function of the behaviour of the system over the whole time horizon. We suppose that, at every instant, the decision maker is able to make observations on the system and even to keep some in memory. Since it is generally profitable to take these observations into account in order to draw further actions, we aim at designing decision rules rather than simple decisions. Such rules map to every instant and every possible observation of the system a decision to make. The present manuscript presents three main contributions. The first is concerned with the study of scenario-based solving methods for SOC problems. We compare the use of the so-called scenario trees technique to the particle method. The first one has been widely studied among the Stochastic Programming community and has been somehow popular in applications, until recent developments showed numerically as well as theoretically that this methodology behaved poorly when the number of time steps of the problem grows. We here explain this fact in details and show that this negative feature is not to be attributed to the scenario setting, but rather to the use of a tree structure. Indeed, we show on numerical examples how the particle method, which is a newly developed variational technique also based on scenarios, behaves in a better way even when dealing with a large number of time steps. The second contribution starts from the observation that, even with particle methods, we are still facing some kind of curse of dimensionality. In other words, decision rules intrisically suffer from the dimension of their domain, that is observations (or state in the Dynamic Programming framework). For a certain class of systems, namely decomposable systems, we adapt results concerning the decomposition of large-scale systems which are well known in the deterministic case to the SOC case. The application is not straightforward and requires some statistical analysis for the dual variable, which is in our context a stochastic process. We propose an original algorithm called Dual Approximate Dynamic Programming (DADP) and study its convergence. We also apply DADP to a real-life power management problem. The third contribution is concerned with a rather structural property for SOC problems: the question of dynamic consistency for a sequence of decision making problems over time. Our aim is to establish a link between the notion of time consistency, that we loosely define in the last chapter, and the central concept of state structure within optimal control. This contribution is original in the following sense. Many works in the literature aim at finding optimization models which somehow preserve the "natural" time consistency property for the sequence of decision making problems. On the contrary, we show for a broad class of SOC problems which are not a priori time-consistent that it is possible to regain this property by simply extending the state structure of the model
43

Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Zhou, Yi (Software engineer) 12 1900 (has links)
Significant research efforts have been devoted to large-scale dynamical systems, with the aim of understanding their complicated behaviors and managing their responses in real-time. One pivotal technological obstacle in this process is the existence of uncertainty. Although many of these large-scale dynamical systems function well in the design stage, they may easily fail when operating in realistic environment, where environmental uncertainties modulate system dynamics and complicate real-time predication and management tasks. This dissertation aims to develop systematic methodologies to evaluate the performance of large-scale dynamical systems under uncertainty, as a step toward real-time decision support. Two uncertainty evaluation approaches are pursued: the analytical approach and the effective simulation approach. The analytical approach abstracts the dynamics of original stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for the approximated systems. Despite the potential bias introduced in the approximation process, the analytical approach provides rich insights valuable for evaluating and managing the performance of large-scale dynamical systems under uncertainty. When a system’s complexity and scale are beyond tractable analysis, the effective simulation approach becomes very useful. The effective simulation approach aims to use a few smartly selected simulations to quickly evaluate a complex system’s statistical performance. This approach was originally developed to evaluate a single uncertain variable. This dissertation extends the approach to be scalable and effective for evaluating large-scale systems under a large-number of uncertain variables. While a large portion of this dissertation focuses on the development of generic methods and theoretical analysis that are applicable to broad large-scale dynamical systems, many results are illustrated through a representative large-scale system application on strategic air traffic management application, which is concerned with designing robust management plans subject to a wide range of weather possibilities at 2-15 hours look-ahead time.
44

N-ary level in the software test vehicle for the Infoplex database computer

Lui, David January 1982 (has links)
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / Includes bibliographical references. / by David Lui. / B.S.
45

Multiple time scale approach to heirarchical aggregation of linear systems and finite state Markov processes

Coderch i Collell, Marcel January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 328-332. / by Marcel Coderch i Collell. / Ph.D.
46

On steady-state load feasibility in an electrical power network

Dersin, Pierre January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / by Pierre Dersin. / Ph.D.
47

Controller Design of Multivariable LTI Unknown Systems

Wang, William Szu-Wei 04 September 2012 (has links)
This thesis deals with the design of multivariable controllers for stable linear time-invariant multi-input multi-output systems, with an unknown mathematical model, subject to constant reference/disturbance signals and actuator saturation constraints. A new controller parameter optimization approach, which can be carried out experimentally with no knowledge of the plant model nor of the order of the system, is proposed. The approach has the advantage that controllers can be optimized by perturbing only the initial conditions of the servocompensator, and that the order of the resulting controller obtained can be specified by the designer. Implementation of the proposed controller design approach is described, and an experimental application study of the proposed method applied to a multivariable system with industrial sensor/actuator components is presented to illustrate the feasibility of the design method in an industrial environment.
48

Controller Design of Multivariable LTI Unknown Systems

Wang, William Szu-Wei 04 September 2012 (has links)
This thesis deals with the design of multivariable controllers for stable linear time-invariant multi-input multi-output systems, with an unknown mathematical model, subject to constant reference/disturbance signals and actuator saturation constraints. A new controller parameter optimization approach, which can be carried out experimentally with no knowledge of the plant model nor of the order of the system, is proposed. The approach has the advantage that controllers can be optimized by perturbing only the initial conditions of the servocompensator, and that the order of the resulting controller obtained can be specified by the designer. Implementation of the proposed controller design approach is described, and an experimental application study of the proposed method applied to a multivariable system with industrial sensor/actuator components is presented to illustrate the feasibility of the design method in an industrial environment.
49

DECENTRALIZED ADAPTIVE CONTROL FOR UNCERTAIN LINEAR SYSTEMS: TECHNIQUES WITH LOCAL FULL-STATE FEEDBACK OR LOCAL RELATIVE-DEGREE-ONE OUTPUT FEEDBACK

Polston, James D 01 January 2013 (has links)
This thesis presents decentralized model reference adaptive control techniques for systems with full-state feedback and systems with output feedback. The controllers are strictly decentralized, that is, each local controller uses feedback from only local subsystems and no information is shared between local controllers. The full-state feedback decentralized controller is effective for multi-input systems, where the dynamics matrix and control-input matrix are unknown. The decentralized controller achieves asymptotic stabilization and command following in the presence of sinusoidal disturbances with known spectrum. We present a construction technique of the reference-model dynamics such that the decentralized controller is effective for systems with arbitrarily large subsystem interconnections. The output-feedback decentralized controller is effective for single-input single-output subsystems that are minimum phase and relative degree one. The decentralized controller achieves asymptotic stabilization and disturbance rejection in the presence of an unknown disturbance, which is generated by an unknown Lyapunov-stable linear system.
50

Sensor Placement for Diagnosis of Large-Scale, Complex Systems: Advancement of Structural Methods

Rahman, Brian M. 02 October 2019 (has links)
No description available.

Page generated in 0.0598 seconds