Spelling suggestions: "subject:"scale up"" "subject:"acale up""
41 |
Estudo da ampliação de escala do processo de pré-tratamento alcalino do bagaço de cana-de-açúcar para obtenção de etanol de segunda geração / Scale up study of sugarcane bagasse alkaline pretreatment process for second generation ethanol productionSimone Coelho Nakanishi 05 October 2016 (has links)
No presente trabalho, dados de ampliacao de escala, de um processo de pre-tratamento alcalino em escala laboratorial (2L) para escala piloto (350L) foram avaliados. Os experimentos realizados previamente em escala laboratorial apontaram duas condições potenciais para a ampliacao de escala, a saber: Ensaio 5 (130°C, 30 min, 1,5% m/v NaOH, 0,15% m/m antraquinona) apresentando a maior conversao enzimatica da polpa obtida (64,5%) e Ensaio 7 (170°C, 1,5 % m/v NaOH, 30 min, 0,15% m/m antraquinona) com a maior solubilizacao de lignina (81,0 %). Os experimentos em escala piloto foram realizados nas condicoes apontadas, com e sem a adicao de antraquinona. A reprodutibilidade dos dados em escala piloto foi satisfatoria, considerando o sistema de aquecimento e agitacao mais eficientes do reator piloto em relacao ao reator usado no laboratorio. O uso da antraquinona diminuiu a solubilizacao de carboidratos durante o pretratamento (evitando 67% de solubilizacao quando comparado a reacao sem antraquinona, a 130°C), mas interferiu negativamente na etapa subsequente de hidrolise, principalmente na reacao a 170°C. Dentre as condicoes testadas, o ensaio 5Pil/AQ (130°C, 30 min, 1,5% NaOH e 0,15% m/m antraquinona) foi eleito como a melhor condicao de pre-tratamento, com maior rendimento em carboidratos apos a hidrolise enzimatica, sendo possivel obter (extrapolando os resultados) 290 kg de glicose e 98 kg de xilose a partir de uma tonelada de bagaco (base seca). Para a obtencao de etanol a partir desse hidrolisado, foram realizadas fermentacoes com tres diferentes leveduras - S. cerevisiae CAT-1, S. stipitis NRRL Y-7124 e S. passalidarum NRRL Y-27907. O melhor resultado foi apresentado para fermentacao em batelada alimentada aplicando reciclo de celulas utilizando a levedura S. passalidarum, produzindo 23,3 g/L de etanol (97 % do teorico) com produtividade de 0,90 g/L.h em 24 h de fermentacao no terceiro reciclo. O processo de pre-tratamento alcalino gera, alem da polpa rica em carboidratos, um hidrolisado rico em lignina. A lignina foi precipitada desse hidrolisado apos cada pre-tratamento realizado e caracterizada, apresentando poder calorifico entre 22,8 e 25,3 MJ/kg. / In this study, data scale up for an alkaline pretreatment process from lab to pilot scale was evaluated. Lab scale experiments indicated two potential conditions for the scale-up, namely: 130°C, 30 min, 1.5% w/v NaOH, 0.15% w/w anthraquinone , presenting the highest enzymatic conversion (64.5%); and 170°C, 30 min, 1.5% w/v NaOH, 0.15% w/w anthraquinone with the highest lignin solubilization (81.0 %). The experiments were performed on pilot scale under the aforementioned conditions, with and without anthraquinone. Data reproducibility on pilot scale was satisfactory considering the more efficient heating and stirring reactor system when compared to the reactor in lab scale. Anthraquinone decreases the solubilization of carbohydrates during pretreatment (avoiding 67% solubilization compared to the reaction without anthraquinone, at 130°C), but interferes negatively in the subsequent hydrolysis step, mostely at 170°C. Among the conditions tested, the test performed at 130°C, 30 min, 1.5% w/v NaOH and with 0.15% w/w anthraquinone was chosen as the best pretreatment condition, with the highest carbohydrate conversion after enzymatic hydrolysis, allowing 290 kg of glucose and 98 kg of xylose per a dry base ton of bagasse. In order to produce ethanol from this hydrolyzate, fermentations with three different yeasts were performed - S. cerevisiae CAT-1, S. stipites NRRL Y-7124, S. passalidarum NRRL Y-27907. Fed-batch fermentation with S. passalidarum cell recycling provided the best result, yielding 23.3 g/L ethanol, 97 % (theoretical yield) with 0.90 g/L.h productivity within 24 h of fermentation. The alkaline pretreatment process generates, besides the pulp rich in carbohydrates, a lignin-rich hydrolyzate. Lignin was precipitated from the hydrolyzate obtained after each pretreatment carried out and characterized, presenting heating values between 22.8 and 25.3 MJ/kg.
|
42 |
Design, Scale-up and Optimization of Double Emulsion Processes / Conception, extrapolation et optimisation des procédés d'émulsion doubleKhadem Hamedani, Behnam 15 July 2019 (has links)
De nos jours, les émulsions doubles se trouvent dans de nombreuses applications dans différents domaines, tels que le domaine alimentaire, les produits cosmétiques, les produits chimiques ou biochimiques. Dans les produits alimentaires par exemple, les émulsions doubles peuvent permettre d’encapsuler des arômes ou de réduire la teneur en matières grasses. La littérature manque cependant de compréhension globale de ces systèmes. La modélisation peut améliorer la compréhension d'un système et permettre d'optimiser les conditions de fonctionnement afin d'améliorer la qualité du produit. Dans ces systèmes, la qualité du produit est déterminée par l'efficacité de l'encapsulation et la distribution de la taille des gouttes internes et externes, qui peuvent affecter la stabilité physique pendant le stockage. L'objectif de ce travail est de réaliser une étude théorique et expérimentale approfondie des phénomènes intervenant à la fois lors de la préparation et du stockage des émulsions doubles. La contribution du travail peut donc être divisée en deux parties. Dans un premier temps, nous étudions les paramètres affectant l’étape de préparation des émulsions doubles et nous proposons des modèles pour les décrire. Trois procédés ont été considérés pour l’émulsification des émulsions doubles, l’ultra-sonication, l’Ultra-Turrax et un réacteur agité. Le modèle est basé sur un modèle de bilan de population des gouttelettes externes, incluant les phénomènes de rupture et de coalescence, associé à un modèle de relargage des gouttes internes. Le relargage des gouttes internes est supposé être régi par la rupture des gouttes externes. Pour être applicables aux différents procédés, les modèles de rupture ont été adaptés aux différentes échelles de turbulence, de dissipation pour ultra-sonication et inertielle pour Ultra-Turrax. La deuxième contribution de ce travail concerne l’étude des phénomènes ayant lieu lors du stockage des émulsions doubles, notamment le gonflement et le relargage des gouttes. Dans ce cas, deux modèles de bilan de population des gouttelettes internes et externes ont été développés, comprenant les phénomènes de gonflement des gouttelettes internes, et donc externes, ainsi que le relagage des gouttelettes internes par diffusion et coalescence avec la phase continue externe. Le modèle de gonflement prend en compte la pression de Laplace qui contrebalance le gradient de pression osmotique et arrête le gonflement. Dans les différentes étapes de préparation ou de stockage, les modèles développés permettent de prédire les distributions de la taille des gouttelettes et le taux de libération / Double emulsions can nowadays be found in a number of applications in different domains, like food, cosmetics, chemicals or biochemical. In food for instance, double emulsions may allow to encapsulate flavors or reduce the fat content. Yet, the literature is still lacking a comprehensive understanding of these systems. Modelling may improve the understanding of a system and allow optimizing the operating conditions in order to improve the product quality. In these systems, the product quality is determined by the encapsulation efficiency and the inner and outer droplet size distribution, which may affect the physical stability during storage. The objective of this work is to handle theoretical and experimental investigations of the phenomena occurring during both the preparation and the storage of double emulsions. The contribution of the work can therefore be divided into two parts. First of all, investigations of the parameters affecting the preparation step of double emulsions are handled, and models are proposed to describe them. Three processes were considered for the emulsification of the double emulsions, ultrasonication, Ultra-Turrax and a stirred vessel. The model is based on a population balance model of the outer droplets, including the kernels of breakage and coalescence combined with a leakage model of the inner droplets. The leakage of inner droplets is assumed to be governed by the breakage of the outer droplets. In order to be applicable in the different processes, the breakage models were adapted to different scales of turbulence, the dissipation subrange for ultrasonication and the inertial subrange for the Ultra-Turrax. The second contribution of the work concerns the investigation of the phenomena taking place during the storage of the double emulsions, including swelling and release. In this case, two population balance models of the inner and outer droplets were considered, including the phenomena of swelling of the inner, and so of the outer, droplets as well as the escape of the inner droplets by diffusion and coalescence with the external continuous phase. The swelling model takes into account the Laplace pressure that counterbalances the osmotic pressure which is the driving force for swelling. In the different steps of preparation or storage, the developed models allow the prediction of the droplet size distributions and the release rate
|
43 |
Synchronization and Media Exchange in Large-Scale Caenorhabditis elegans CulturesBrown, Jason Daniels 01 May 2009 (has links)
The nematode Caenorhabditis elegans is a model organism for understanding sensory molecules of multicellular organisms. Ovulating hermaphrodites produce putative pheromone(s) that cause male attraction. Because pheromones are produced in such small quantities, adult conditioned-media from large-scale synchronous culture is necessary to analyze these pheromones. Current protocols for culture synchronization have volume constraints that limit large-scale synchronous cultures and current methodology for adult conditioned-media production is impractical.
Modification of Tangential Flow Filtration (TFF) systems was investigated for use as a method to increase the volume limits of bleach egg harvest for C. elegans culture synchronization. Also, an adult retention device built within the culture vessel was investigated to optimize the environment for aseptic conditioned-media production from dense large-scale C. elegans cultures.
During this investigation, we have shown that synchronous C. elegans cultures for adult conditioned-media production can be grown at scales larger than reported before, with potential for further scale up. Our growth methodologies have also yielded denser cultures than previously achieved at large scales. Since rapid bleach harvesting appears to be the bottleneck for large-scale production of synchronous C. elegans cultures, our approach of using modified TFF systems with mesh to retain C. elegans eggs increased the amount of eggs that could be bleach harvested at one time. Using this method we have been able to achieve up to 5x103 synchronous C. elegans per mL at a 50L scale. Since scale-up of TFF is straightforward, our results suggest that the technique reported here can easily be applied to larger scale systems for production of adult conditioned-media for C. elegans. Further, the adult retention device within the culture vessel can ensure that the whole process remains aseptic.
|
44 |
Microstructural breakdown and scale-up effects in equal channel angular extrusion of cast copperKadri, Shabibahmed Jehangir 30 October 2006 (has links)
The primary objectives of this study were: (1) to verify the effectiveness of ECAE
to induce equal amounts of strain and grain refinement in bars of different cross-sectional
areas, (2) to determine the effectiveness of ECAE in breaking down the as-cast
macrostructure in CDA 101 Cu and in producing a homogeneous material containing
micron-scale grains upon recrystallization, and (3) to determine a thermomechanical
processing (TMP) schedule (from the ones examined) that produces the best
microstructure in terms of grain size and uniformity. The effects of extrus ion route, levels
of strain and intermediate heat treatment were investigated.
To achieve the first objective, bars having square cross-sections of three different
sizes, 19 mm, 25 mm and 50 mm, were processed up to eight ECAE passes through
routes A, B, C and E. To achieve the second and third objectives, bars were processed up
to eight ECAE passes with and without intermediate heat treatments through routes Bc,
C, E and F. ECAE processing was carried out in a 90o extrusion die with sliding walls at
an extrusion speed of 2.5 mm/s. Recrystallization studies were carried out on the
processed material to evaluate the recrystallization behavior and thermal stability of the
material. The as-worked and recrystallized materials were characterized by Vickers
microhardness, optical microscopy (OM) and transmission electron microscopy (TEM).
Results indicate that similar hardness values, sub-grain morphology and
recrystallized grain size are generated in the three bars having different cross-sectional
sizes processed through ECAE. ECAE is shown to induce uniform strain in all three billet
sizes. ECAE is therefore shown to be effective in scale-up to a size of at least 50 mm,
with larger billets giving better load efficiency. Results from the later parts of this study indicate that eight extrusion passes via
route Bc produces the best microstructure in terms of grain size and microstructural
uniformity. The routes can be arranged in the sequence Bc> E, F> C for their ability to
produce a uniform recrystallized microstructure with small average grain size.
Macroscopic shear bands are sometimes generated during extrusion depending upon the
initial grain morphology and texture of the material.
|
45 |
Scale-up of dispersion for simulation of miscible displacementsAdepoju, Olaoluwa Opeoluwa 07 October 2013 (has links)
Dispersion has been shown to degrade miscibility in miscible displacements by lowering the concentration of the injected solute at the displacement fronts. Dispersion can also improve oil recovery by increasing sweep efficiency. Either way, dispersion is an important factor in understanding miscible displacement performance. Conventionally, dispersion is measured in the laboratory by fitting the solution of one-dimensional convection-dispersion equation (CDE) to the effluent concentration from a core flood. However dispersion is anisotropic and mixing occurs in both longitudinal and transverse directions. This dissertation uses the analytical solution of the two-dimensional CDE to simultaneously determine longitudinal and transverse dispersion. The two-dimensional analytical solution for an instantaneous finite volume source is used to investigate anisotropic mixing in miscible displacements. We conclude that transverse mixing becomes significant with large a concentration gradient in the transverse direction and significant local variation in flow directions owing to heterogeneity. We also utilized simulation models similar to Blackwell's (1962) experiments to determine transverse dispersion. This model coupled with the analytical solution for two-dimensional CDE for continuous injection source is used to determine longitudinal and transverse dispersivity for the flow medium. The validated model is used to investigate the effect of heterogeneity and other first contact miscible (FCM) scaling groups on dispersion. We derive the dimensionless scaling groups that affect FCM displacements and determine their impact on dispersion. Experimental design is used to determine the impact and interactions of significant scaling groups and generate a response surface function for dispersion based on the scaling groups. The level of heterogeneity is found to most significantly impact longitudinal dispersion, while transverse dispersion is most significantly impacted by the dispersion number. Finally, a mathematical procedure is developed to use the estimated dispersivities to determine a-priori the maximum grid-block size to maintain an equivalent level of dispersion between fine-scale and upscaled coarse models. Non-uniform coarsening schemes is recommended and validated for reservoir models with sets of different permeability distributions. Comparable sweep and recovery are observed when the procedure was extended to multi-contact miscible (MCM) displacements. / text
|
46 |
Scale-up of reactive processes in heterogeneous mediaSingh, Harpreet, active 21st century 16 February 2015 (has links)
Physical and chemical heterogeneities cause the porous media transport parameters to vary with scale, and between these two types of heterogeneities geological heterogeneity is considered to be the most important source of scale-dependence of transport parameters. Subsurface processes associated with chemical alterations result in changing reservoir properties with interlinked spatial and temporal scale, and there is uncertainty in the evolution of those properties and the chemical processes. This dissertation provides a framework and procedures to quantify the spatiotemporal scaling characteristics of reservoir attributes and transport processes in heterogeneous media accounting for chemical alterations in the reservoir. Conventional flow scaling groups were used to assess their applicability in scaling of recovery and Mixing Zone Length (MZL) in presence of chemical reactivity and permeability heterogeneity through numerical simulations of CO₂ injection. It was found out that these scaling groups are not adequate enough to capture the scaling of recovery and transport parameters in the combined presence of chemical reactivity and physical heterogeneity. In this illustrative example, MZL was investigated as a function of spatial scale, temporal scale, multi-scale heterogeneity, and chemical reactivity; key conclusions are that 1) the scaling characteristics of MZL distinctly differ for low permeability and high permeability media, 2) heterogeneous media with spatial arrangements of both high and low permeability regions exhibit scaling characteristics of both high and low permeability media, 3) reactions affect scaling characteristics of MZL in heterogeneous media, 4) a simple rescaling can combine various MZL curves by merging them into a single MZL curve irrespective of the correlation length of heterogeneity, and 5) estimates of MZL (and consequently predictions of oil recovery) will fluctuate corresponding to displacements in a permeable medium whose lateral length is smaller than the correlation length of geological formation. We illustrate and extend the procedure of estimating Representative Elementary Volume (REV) to include temporal scale by coupling it with spatial scale. The current practice is to perform spatial averaging of attributes and account for residual variability by calibration and history matching. This results in poor predictions of future reservoir performance. The proposed semi-analytical technique to scale-up in both space and time provides guidance for selection of spatial and temporal discretizations that takes into account the uncertainties due to sub-processes. Finally, a probabilistic particle tracking (PT) approach is proposed to scale-up flow and transport of diffusion-reaction (DR) processes while addressing multi-scale and multi-physics nature of DR mechanisms and also maintaining consistent reservoir heterogeneity at different levels of scales. This multi-scale modeling uses a hierarchical approach which is based on passing the macroscopic subsurface heterogeneity down to the finer scales and then returning more accurate reactive flow response. This PT method can quantify the impact of reservoir heterogeneity and its uncertainties on statistical properties such as reaction surface area and MZL, at various scales. / text
|
47 |
Scale-up methodology for chemical floodingKoyassan Veedu, Faiz 17 February 2011 (has links)
Accurate simulation of chemical flooding requires a detailed understanding of numerous complex mechanisms and model parameters where grid size has a substantial impact upon results. In this research we show the effect of grid size on parameters such as phase behavior, interfacial tension, surfactant dilution and salinity gradient for chemical flooding of a very heterogeneous oil reservoir. The effective propagation of the surfactant slug in the reservoir is of paramount importance and the salinity gradient is a key factor in ensuring the process effectiveness. The larger the grid block size, the greater the surfactant dilution, which in turn erroneously reduces the effectiveness of the process indicated with low simulated oil recoveries. We show that the salinity gradient is not adequately captured by coarse grid simulations of heterogeneous reservoirs and this leads to performance predictions with lower recovery compared to fine grid simulations. Due to the highly coupled, nonlinear interactions of the many chemical and physical processes involved in chemical flooding, it is better to use fine-grid simulations rather than coarse grids with upscaled physical properties whenever feasible. However, the upscaling methodology for chemical flooding presented in this work accounts approximately for some of the more important effects, as demonstrated by comparison of fine grid and coarse grid results and is very different than the way other enhanced oil recovery methods are upscaled. This is a step towards making better performance predictions of chemical flooding for large field projects where it is not currently feasible to perform the large number of simulations required to properly consider different designs, optimization, risk and uncertainty using fine-grid simulations. / text
|
48 |
Developing design criteria and scale up methods for water-stable metal-organic frameworks for adsorption applicationsJasuja, Himanshu 21 September 2015 (has links)
Metal-organic frameworks (MOFs) are a relatively new class of porous materials, assembled from inorganic metal nodes and organic ligands. MOFs have garnered significant attention in the porous materials and adsorption fields in recent years due to their various attractive features such as high surface areas and pore volumes, tunable and uniform pore sizes, chemically functionalized adsorption sites, and potential for post-synthetic modification. These features give MOFs enormous potential for use in applications such as air purification, methane and hydrogen storage, separations, catalysis, sensing, and drug delivery. Therefore, synthesis and adsorption studies of MOFs have increased tremendously in recent years. Among the aforesaid applications, air purification and air quality control are important topics because existing porous media are ineffective at the adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents. Thus, there is a critical need for radical improvements in these purification systems. MOFs have shown great potential to become next-generation filter media as they outperform the traditional porous materials such as activated carbons and zeolites in the air purification of TICs such as ammonia and sulfur dioxide.
In spite of the numerous desirable attributes of MOFs, the practical use of these new materials in most applications hinges on their stability in humid or aqueous environments. The sensitivity of certain MOFs under humid conditions is well known, but systematic studies of the water stability properties of MOFs are lacking. This information is critical for identifying structural factors that are important for development of next-generation, water stable MOFs. In addition to the water stability issue, difficulty in the scale up of MOF synthesis has also plagued MOFs. Hence, the goal of this Ph.D. dissertation research is to design ammonia-selective, water stable MOFs that can be synthesized on a large scale. This work will have a direct impact on moving the MOF field forward to the commercial level. To achieve the aforementioned goal, this Ph.D. dissertation research has been divided into following three objectives:
(1) Advance our understanding of the water stability of MOFs and develop design criteria for the construction of water stable MOFs.
(2) Design water stable, ammonia-selective MOFs for next-generation chemical, biological, radiological, and nuclear (CBRN) filter media.
(3) Investigate the scale-up of the UiO-66 MOF scaffold.
Through the research efforts over the past four years, it is discovered that it is possible to adjust the water stability of pillared MOFs in both positive and negative directions by proper shielding of the ligand via functional groups. This study is the first of its kind and is of high value for the MOF community. This shielding concept is further extended by synthesizing 4 novel isostructural MOFs with methyl functional groups at different positions on the ligand. For the first time, light is shed on the important distinction between kinetic and thermodynamic water stability and experimental evidence for a kinetically governed water stability mechanism in these MOFs is provided. It is also demonstrated that, using catenation in combination with a pillaring strategy, it is possible to obtain water stable MOFs even when the pillar ligand has lower basicity (pKa value). Ammonia breakthrough measurements have shown that a hydroxyl functionalized Zr-based UiO-66 material is promising as it could offer a method for targeting the removal of specific chemical threats in a chemically stable framework that does not degrade in the presence of water. Large scale synthesis of a water stable MOF, UiO-66, is studied using glass vials and Teflon lined autoclaves. UiO-66 synthesis methods have been refined such that it is now possible to produce more than 70 times the yield obtained from the original synthesis report using the same reaction volume. This would result in a significant reduction of the MOF production cost at the industrial scale.
Methane and hydrogen are ‘clean fuels’ (less CO2 emissions than petroleum) and MOFs are being tested for their on-board storage in cars due to the extremely high storage capacities of MOFs being promising enough to meet the requirements. Hence, more broadly, this Ph.D. dissertation work will lead to commercial applications of MOFs, which can revolutionize a variety of gas separation and storage problems such as CO2 capture, natural gas upgrading, and methane and hydrogen storage for clean fuel technologies. This would greatly reduce the environmental concerns faced by our society today.
|
49 |
Hydrodynamics, stability and scale-up of slot-rectangular spouted bedsChen, Zhiwei 05 1900 (has links)
Slot-rectangular spouted beds, with rectangular cross-section and slotted gas inlets, have been proposed as a solution to overcoming scale-up difficulties with conventional axisymmetric spouted beds. They can be utilized in gas/particle processes such as drying of coarse particles and coating of tablets. However, application of this spouted bed was limited because of instability and insufficient hydrodynamic studies. The present work is therefore aimed at the study of hydrodynamics, stability and scale-up of slot-rectangular spouted beds.
The hydrodynamic study was carried out in four slot-rectangular columns of various width-to-thickness ratios combined with various slot configurations, particles of different properties and a range of operating conditions. Hydrodynamics of slot-rectangular spouted beds showed major similarity with conventional spouted beds. However, equations and mechanistic models adopted from conventional axisymmetric spouted beds generally failed to provide good predictions for the three-dimensional slot-rectangular geometry. New empirical correlations were derived for the minimum spouting velocity and maximum pressure drop for different slot configurations. Slot-rectangular spouted beds also showed more flow regimes than conventional spouted beds. Nine flow regimes, as well as unstable conditions, were identified based on frequency and statistical analysis of pressure fluctuations.
Slot geometrical configuration was found to be the main factor affecting the stability of slot-rectangular spouted beds. A comprehensive hydrodynamic study on the effect of slot configuration was therefore carried out. Slots of smaller length-to-width ratio, smaller length and greater depth were found to provide greater stability. Stable criteria for the slot configuration were found consistent with the conventional axisymmetric spouted beds with extra limitation on slot length-to-width ratio and slot depth. Local distributions of pressure, particle velocity and voidage, as well as spout shape and particle circulating flux, were compared for different slot configurations. Higher slot length-to-width ratios lead to slightly higher particle circulation rates.
A previously proposed scale-up method involving multiple chambers was tested in the present work using multiple slots. Instability caused by the merging of multiple spouts and asymmetric flow was successfully prevented by suspending vertical partitions between the fountains. Some criteria and guidelines were also proposed for scale-up using multiple chambers.
|
50 |
The applicability of batch tests to assess biomethanation potential of organic waste and assess scale up to continuous reactor systemsQamaruz Zaman, Nastaein January 2010 (has links)
Many of the current methods of assessing anaerobic biodegradability of solid samples require sample modification prior to testing. Steps like sample drying, grinding, re-drying and re-grinding to 2mm or less make the test results difficult to apply to field conditions and could lead to oxygen exposure, possibly distorting the results. Finally, because of a small sample size of about 10-50g w/w, the test result may not be representative of the bulk material.
A new tool dubbed ‘tube’ has been developed, made of 10 cm diameter PVC pipe measuring 43.5 cm long with 3600 ml capacity with caps at both ends. For easy sample introduction, one endcap is fixed while the other is screw capped. A distinctive feature is the wide neck opening of about 10 cm where solid samples can be introduced as is, without further sample modification.
Research has proven the tube applicable across various types of solid organic waste and conditions provided that a suitable organic loading rate is determined. The tube is best operated using 5-7 days pre-digested digested sewage sludge as seed, with minimal mixing and without the addition of nutrients or alkali solution. The test result can be obtained within 4-6 days to 20 days, signifying a 50-75% and 95% substrate degradation, respectively. Irreproducibility seen in some experiments may not only be a function of the seed and the substrate. The organic loading rate (OLR) at which the test is conducted is also influential especially if test is conducted closer to its maximum OLR tolerance where anaerobic process is more erratic.
The performance of a continuous reactor digesting on a similar substrate can be estimated using this new tool. Food waste is established by the tubes to have an ultimate methane potential (B0) of 0.45L CH4/g VS. The same substrate when digested in a continuous reactor will produce about (B) 0.32 L CH4/g VS. The first order rate constant for both systems; batch and continuous are identical at 0.12 to 0.28 d-1. First order kinetics is efficient at modelling the anaerobic degradation when the process is healthy but may be less reliable under an unstable process.
This research recommends the use of kinetics in combination with the experimental data (e.g. HRT, OLR, yield) when planning and designing an industrial plant to avoid overdesign and unnecessary building, maintenance and operating costs.
|
Page generated in 0.0853 seconds