• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 20
  • 17
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 311
  • 311
  • 311
  • 80
  • 74
  • 63
  • 57
  • 54
  • 46
  • 45
  • 44
  • 42
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Local measurements of cyclotron states in graphene

Kubista, Kevin Dean 04 April 2011 (has links)
Multilayer epitaxial graphene has been shown to contain "massless Dirac fermions" and is believed to provide a possible route to industrial-scale graphene electronics. We used scanning tunneling microscopy (STM) and spectroscopy (STS) in high magnetic fields to obtain local information on these fermions. A new STS technique was developed to directly measure graphene's energy-momentum relationship and resulted in the highest precision measurement of graphene's Dirac cone. STS spectra similar to ideal graphene were observed, but additional anomalies were also found. Extra peaks and an asymmetry between electron and hole states were shown to be caused by the work function difference between the Iridium STM tip and graphene. This tip effect was extracted using modeled potentials and performing a least square fit using degenerate perturbation theory on graphene's eigenstates solved in the symmetric gauge. Defects on graphene were then investigated and magnetic field effects were shown to be due to a mixture of potential effect from defects and the tip potential. New defect states were observed to localize around specific defects, and are believed to interact with the STM tip by Stark shifting in energy. This Stark shift gives a direct measurement of the capacitive coupling between the tip and graphene and agrees with the modeled results found when extracting the tip potential.
202

Tunneling spectroscopy of highly ordered organic thin films / Tunnelspektroskopie von hochgeordneten organischen Dünnschichten

Törker, Michael 23 May 2003 (has links) (PDF)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
203

STM studies of ABP molecules - towards molecular latching for dangling-bond wire circuits

Nickel, Anja 14 December 2015 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es ein Molekül zu finden und mittels hochauflösender Techniken zu untersuchen, das auf passivierten Halbleiteroberflächen als Schalter in atomaren Schaltkreisen wirken kann. Für diesen Zweck stehen Moleküle zur Verfügung, die aus mindestens einem aromatischen Ring und einer Ankergruppe bestehen, die kovalent auf Silizium bindet. Um einzelne Moleküle auf leitenden Substraten zu untersuchen, hat sich die Nutzung eines Tieftemperatur-Rastertunnelmikroskops (low-temperature scanning tunneling microscope, LT-STM) als geeignetes Werkzeug erwiesen. Zum Einen ist damit die topographische und spektroskopische Charakterisierung von leitenden Proben auf atomarer Ebene möglich, zum Anderen können einzelne Moleküle und Nanostrukturen hochpräzise bewegt oder elektrisch angesprochen werden. Atomare Schaltkreise können besonders präzise auf passivierten Halbleiteroberflächen hergestellt werden. So ist es zum Beispiel möglich, eine Reihe Wasserstoffatome gezielt mit Hilfe einer STM-Spitze von der Oberfläche zu desorbieren. Durch die Überlappung der dann freien Orbitale entstehen, je nach Richtung auf der Oberfläche, atomare Drähte mit unterschiedlichen elektrischen Eigenschaften. Da die Drähte empfindlich hinsichtlich ihrer chemischen Umgebung sind, können diese auch als logische Schaltelemente verwendet werden. Dafür werden die Drähte mit einzelnen Molekülen angesteuert. Geeignete Schaltmoleküle wurden zunächst auf der Au(111)-Oberfläche getestet. Dabei konnten grundlegende und interessante Eigenschaften von selbst-assemblierten Strukturen untersucht werden. Am Modellsystem von nicht-kovalent gebundenen 4-Acetylbiphenyl-Nanostrukturen auf Gold (111) wurde eine neue Methode entwickelt diese Molekülgruppen behutsam zu bewegen. Durch Anlegen eines Spannungspulses auf den Nanostrukturen konnten diese auf der Oberfläche über weite Strecken gezielt und ohne Beeinflussung der internen Struktur positioniert werden. Um Moleküle für zukünftige elektronische Anwendungen zu untersuchen wurde zunächst das Verfahren zur Präparation von sauberen Siliziumoberflächen in die hier verwendeten Anlage implementiert. Es konnten reproduzierbar saubere, (2×1) rekonstruierte Si(100)- Oberflächen präpariert und charakterisiert werden. Nach der erfolgreichen Präparation von Silizium-Oberflächen und der Entwicklung geeigneter Präparationsrezepte für das Schalter-Molekül 4-Acetylbiphenyl (ABP) wurden beide Systeme vereint. Das Molekül konnte erfolgreich auf die Silizium(100)-Oberfläche aufgebracht und die native Adsorptionskonfiguration durch das Anlegen von Spannungspulsen geändert werden. Das Schalten zwischen zwei Konfigurationen ist reproduzierbar und umkehrbar. ABP ist somit der erste umkehrbare molekulare Schalter, der jemals auf Silizium realisiert werden konnte. Bei der Untersuchung technomimetischer Moleküle in Radachsen-Form konnte bisher die Rollbewegung nur anhand der Analyse der Manipulationskurven nachvollzogen und belegt werden. In dieser Arbeit wurde das Rollen eines Nano-Radmoleküls bewiesen. Dazu wurde bei der Synthese in einem Teil der Subphthalocyanin-Räder eine Markierung in Form eines Stickstoffatoms gesetzt. Bei der lateralen Manipulation der Räder auf Gold(111) konnte dann durch Vergleich der STM-Bilder die Markierung verfolgt und darauf geschlossen werden, ob das Rad gerollt oder verschoben wurde. / The aim of this thesis is the investigation of switching properties of single organic molecules, which can be used as molecular latches on a passivated silicon surface. Suitable molecules should be composed of an anchor group that can bind covalently to the silicon surface as well as an aromatic ring for the latching effect. For the imaging as well as the manipulation of single molecules on conductive substrates, a low-temperature scanning tunneling microscope, LT-STM, is a versatile and powerful tool. On the one hand, STM provides topographical and spectroscopic characterization of single molecules on conductive surfaces at the atomic level. On the other hand, under the tip of a STM single molecules and nanostructures can be moved with atomic precision or can be addressed by voltage pulses. Moreover, by STM it is possible to build atomic-scale circuits on passivated semiconducting surfaces as silicon (100). The STM tip is used to extract single hydrogen atoms from the surface to built atomic wires. As the orbitals of the depassivated dangling bonds of the silicon surface overlap differently depending on the direction of the wire in reference to the surface reconstruction, the electrical properties of the wires differ. Moreover, the properties of the wires vary depending on the chemical environment. Taking advantage of these characteristics, the atomic wires can be used as atomic-scale logic elements. However, to bring the input signal to a single logic element, latches are required to controllably passivate and depassivate single dangling-bond pairs. During preliminary studies on possible molecular latches, interesting experiments could be performed on 4-acetylbiphenyl (ABP) on Au(111). The molecules self assemble in non-covalently bond groups of three or four molecules. These groups can be moved controllably by applying voltage pulses on top of the supramolecular structure. The manipulation is possible over long ranges and without losing the internal structure of the assemblies. For the investigation of promising candidates for future molecular electronics on silicon, a preparation procedure tailored to the used UHV machine was developed. During this process, clean (2×1) reconstructed Si(100) surfaces could be prepared reproducibly and were characterized by means of STM imaging and spectroscopy. Switches are essential for electronic circuitry, on macroscopic as well as microscopic level. For the implementation of molecular devices on silicon, ABP is a promising candidate for a latch. In this thesis, ABP was successfully deposited on Si(100) and was switched by applying voltage pulses on top of the molecule. Two stable conformations were found and switching was realized reproducibly and reversibly. In the last part of this work, the rolling of a double-wheel technomimetic molecule was demonstrated. This thesis shows the rolling of a nanowheel on Au(111) as opposed to pushing, pulling or sliding. For this, the subphthalocyanine wheels were tagged by nitrogen during their synthesis. As this tag has different electronic properties than the rest of the wheel, it can be monitored in the STM images. By comparing the images before and after the manipulation the position of the tag proves the actual rolling.
204

Atomic and electronic structure of the cleaved non-polar 6H-SiC(11-20) and GaN(1-100) surfaces / Atomic and electronic structure of the cleaved non-polar 6H-SiC(11-20) and GaN(1-100) surfaces

Bertelli, Marco 30 January 2009 (has links)
No description available.
205

Scanning Tunnelling Microscopy of Co-impurified Noble Metal Surfaces: Kondo-Effect, Electronic Surface States and Diffusive Atom Transport / Rastertunnelmikroskopie an verdünnt Co-legierten Edelmetalloberflächen: Kondo-Effekt, Oberflächenzustände und diffusiver Atomtransport

Quaas, Norbert 10 December 2003 (has links)
No description available.
206

Scanning tunneling spectroscopy of magnetic bulk impurities: From a single Kondo atom towards a coupled system

Prüser, Henning 22 February 2013 (has links)
No description available.
207

Growth and electronic properties of nanostructured epitaxial graphene on silicon carbide

Torrance, David Britt 13 January 2014 (has links)
The two-dimensional phase of carbon known as graphene is actively being pursued as a primary material in future electronic devices. The goals of this thesis are to investigate the growth and electronic properties of epitaxial graphene on SiC, with a particular focus on nanostructured graphene. The first part of this thesis examines the kinetics of graphene growth on SiC(0001) and SiC(0001 ̅) by high-temperature sublimation of the substrate using a custom-built, ultra-high vacuum induction furnace. A first-principles kinetic theory of silicon sublimation and mass-transfer is developed to describe the functional dependence of the graphene growth rate on the furnace temperature and pressure. This theory can be used to calibrate other graphene growth furnaces which employ confinement controlled sublimation. The final chapter in this thesis involves a careful study of self-organized epitaxial graphene nanoribbons (GNRs) on SiC(0001). Scanning tunneling microscopy of the sidewall GNRs confirms that these self-organized nanostructures are susceptible to overgrowth onto nearby SiC terraces. Atomic-scale imaging of the overgrown sidewall GNRs detected local strained regions in the nanoribbon crystal lattice, with strain coefficients as high as 15%. Scanning tunneling spectroscopy (STS) of these strained regions demonstrate that the graphene electronic local density of states is strongly affected by distortions in the crystal lattice. Room temperature STS in regions with a large strain gradient found local energy gaps as high as 400 meV. Controllable, strain-induced quantum states in epitaxial graphene on SiC could be utilized in new electronic devices. / Per request of the author and the advisor, and with the approval of the graduate office, the Acknowledgements page was replaced with an errata.
208

Fundamental studies into the catalytic properties of metal-oxide supported gold and copper nanoparticles

Carew, Alexander Jon January 2001 (has links)
No description available.
209

Molecular tectonics : supramolecular 2D nanopatterning of surfaces by self-assembly

Zhou, Hui January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
210

Spectroscopie tunnel de graphène épitaxié sur du rhénium supraconducteur / Scanning tunneling spectroscopy study of epitaxial graphene on superconducting rhenium

Tonnoir, Charlène 20 December 2013 (has links)
Obtenir une interface transparente entre le graphène et un supraconducteur s'est révélé être difficile et pourtant essentiel pour induire des corrélations supraconductrices dans le graphène par effet de proximité. Cette thèse présente une étude par spectroscopie tunnel (STS) à très basse température (50 mK) d'un système nouveau qui réalise ce bon couplage électronique en faisant croitre du graphène par épitaxie sur du rhénium supraconducteur. La fabrication et sélection des films minces de rhénium de haute qualité cristalline sont brièvement expliquées, suivies par le procédé de croissance CVD du graphène sur divers métaux et en particulier sur du rhénium. Les images topographiques obtenues par STM révèlent un moiré qui résulte de la différence de paramètre de maille entre le graphène et le rhénium. Nous identifions ce système à une monocouche de graphène en forte interaction avec le substrat, résultat corroboré par des calculs DFT. Des analyses STS dans une gamme d'énergie de plusieurs centaines de meV montrent une modulation spatiale de la densité d'états (DOS) à l'échelle du moiré, indiquant différentes forces de couplage entre les ‘collines' et les ‘vallées' du moiré. Les propriétés supraconductrices de l'échantillon en volume sont sondées par des mesures de transport, desquelles nous extrayons la température de transition Tc~2K et la longueur de cohérence supraconductrice ξ=18nm. Le gap supraconducteur est extrait de la DOS mesurée par STS à 50 mK (Δ=330µeV) et trouvé homogène à l'échelle du moiré. L'état mixte supraconducteur est étudié sous champ magnétique et un réseau de vortex d'Abrikosov est mis à jour. Enfin, une étude sur diverses morphologies de surface présente un effet de proximité supraconducteur latéral anormal, en contradiction avec les modèles existants. / Obtaining a transparent interface between graphene and a superconductor has proved to be very challenging and yet essential to induce superconducting correlations in graphene via the so-called proximity effect. This thesis presents a scanning tunneling spectroscopy (STS) study at very low temperature (50 mK) of a novel system achieving such a good electronic contact by the growth of epitaxial graphene on superconducting rhenium. The fabrication and selection of high-crystallographic quality rhenium thin films are briefly explained, followed by the CVD growth process of graphene on various metal substrates and in particular rhenium. STM topographic images reveal a moiré pattern due to the lattice mismatch between graphene and rhenium. We identify this system to a graphene monolayer in strong interaction with the underlying substrate, as corroborated by DFT calculations. STS analyses in the hundreds-meV energy range show a spatial modulation of the density of states (DOS) at the moiré scale, indicating different coupling strengths between ‘hills' and ‘valleys' regions. The bulk superconducting properties are probed by transport measurements, from which we extract the transition temperature Tc~2K and a superconducting coherence length ξ=18nm. The superconducting gap is extracted from the DOS at 50 mK (Δ=330µeV) and found homogeneous at the moiré scale. The superconducting mixed state is studied under magnetic field and an Abrikosov vortex-lattice is uncovered. Finally, a study on various surface morphologies exhibits an anomalous lateral superconducting proximity effect in contradiction with the existing models.

Page generated in 0.1754 seconds