Spelling suggestions: "subject:"canning electron microscopy"" "subject:"8canning electron microscopy""
301 |
Synthesis and electrochemical characterisation of conducting polyaniline-fly ash matrix composites.Mavundla, Sipho Enos. January 2005 (has links)
<p>
<p>  / </p>
<p align="left">  / </p>
<p>  / </p>
</p>
<p align="left">The aim of this study was to produce useful composite materials from fly ash, a major waste product of coal combustion from power plants. Polyaniline-fly ash (PANI-FA) composites were prepared by in situ polymerisation of aniline in the presence of Fly Ash (FA) by two slightly different methods. In one case polystyrene sulphonic acid (PSSA) was used as a stabilizer and in another case the starting materials (aniline and FA) were aged before oxidation. The aging procedure formed nanotubes that have cross-sectional diameters of 50-110 nm. The other procedure produced nanotubes with a diameter of 100-500 nm and the length of up to 10&mu / m. The presence of metal oxides and silica in FA were responsible for the formation of nanorods in PANI-PSSA-FA.. The formation of the composites was confirmed by UV-Vis and FTIR. The UV-Vis showed maximum absorbance at 330-360 nm ( due to &pi / -&pi / * transition of benzoid rings) and 600-650 nm(due to charge transfer excitons of quinoid rings), which are characteristics of emaraldine base. The electrochemical analysis of the composites showed that the composites were conductive and electroactive. The Cyclic Voltammetry of PANI-PSSA-FA showed three redox couples which are characteristics of sulphonated PANI. The morphology of the composites was studied by Scanning Electron Microscopy (SEM) and showed that our methods gave composites with improved homogeneity as compared to other reported methods. Thermo Gravimetric analysis (TGA) showed that the presence of FA in the composites improves the thermal stability of the composites by up to 100 0C.<br />
  / </p>
|
302 |
Fabrication and Applications of a Focused Ion Beam Based Nanocontact Platform for Electrical Characterization of Molecules and ParticlesBlom, Tobias January 2010 (has links)
The development of new materials with novel properties plays an important role in improving our lives and welfare. Research in Nanotechnology can provide e.g. cheaper and smarter materials in applications such as energy storage and sensors. In order for this development to proceed, we need to be able to characterize the material properties at the nano-, and even the atomic scale. The ultimate goal is to be able to tailor them according to our needs. One of the great challenges concerning the characterization of nano-sized objects is how to achieve the physical contact to them. This thesis is focused on the contacting of nanoobjects with the aim of electrically characterizing them and subsequently understanding their electrical properties. The analyzed nanoobjects are carbon nanosheets, nanotetrapods, nanoparticles and molecular systems. Two contacting strategies were employed in this thesis. The first strategy involved the development of a focused ion beam (FIB) based nanocontact platform. The platform consists of gold nanoelectrodes, having nanogaps of 10-30 nm, on top of an insulating substrate. Gold nanoparticles, double-stranded DNA and cadmium telluride nanotetrapods have been trapped in the gaps by using dielectrophoresis. In certain studies, the gold electrodes have also been coated with conducting or non-conducting molecules, prior to the trapping of gold nanoparticles, in order to form molecular junctions. These junctions were subsequently electrically characterized to evaluate the conduction properties of these molecular systems. For the purpose of better controlling the attachment of molecules to the nanoelectrodes, a novel route to synthesize alkanedithiol coated gold nanoparticles was developed. The second contacting strategy was based on the versatility of the FIB instrument as a platform for in-situ manipulation and electrical characterization of non-functionalized and functionalized carbon nanosheets, where it was found that the functionalized samples had an increased conductivity by more than one order of magnitude. Both contacting strategies proved to be valuable for building knowledge around contacting and electrical characterization of nanoobjects
|
303 |
A Statistical Treatment of Non-Normal SEM Data and the Application to Designed Fiber/Filler/Polymer StructuresPeterson, Fern Sterling 13 December 2004 (has links)
One of the primary objectives of this thesis was to design
fiber/filler/polymer structures for newsprint and in the process develop a greater
understanding of fiber/filler/ polymer structures. Five different designed structures were
created for study. The designed structures were composed of virgin, hydrosulfite
bleached, TMP southern pine, Georgian kaolin clay and various polymers. Five filler
levels from 0% to 20% were employed with each of these different structures. Numerous
physical tests were used to gather data which would help to develop an understanding for
the macroscopic properties of the structures.
Paper structures were created and data from bulk physical tests and particle
based SEM image analyses were compared. Comparisons were made using a statistical
method called Principal Component Analysis (PCA) where the data is grouped and
reduced to find data correlations not readily apparent in the raw data.
|
304 |
STM/STS and BEES Study of NanocrystalsShao, Jianfei 11 April 2006 (has links)
This work investigates the electronic properties of very small gold and semiconductor particles using Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Ballistic Electron Emission Spectroscopy (BEES). Complementary theoretical works were also performed. The first theoretical work was to calculate the quantized states in the CdS/HgS/CdS quantum-well-quantum-dot nanocrystals. An eight-band envelope function method was applied to this system. This method treats exactly the coupling between the conduction bands, the light-hole bands, the heavy-hole bands, and the spin-orbit split bands. The contributions of all other bands were taken into account using second order perturbation theory.
Gold nanocrystals with diameters of 1.5 nm have discrete energy levels with energy spacings of about 0.2 eV. These values are comparable to the single electron charging energy, which was about 0.5 eV in our experimental configuration. Since bulk gold doesnt have an energy gap, we expect the electron levels both below and above the Fermi level should be involved in the tunneling. Measured spectroscopy data have rich features. In order to understand and relate these features to the electronic properties of the nanocrystals, we developed a tunneling model. This model includes the effect of excited states that have electron-hole pairs. The relaxation between discrete electron energy levels can also be included in this model. We also considered how the nanocrystals affect the BEES current.
In this work an ultra-high vacuum and low-temperature STM was re-designed and rebuilt. The BEEM/BEES capabilities were incorporated into the STM. We used this STM to image gold nanocrystals and semiconductor nanocrystals. STS and BEES spectra of gold nanocrystals were collected and compared with calculations.
|
305 |
Porosity Analysis in Starch Imbued Handsheets - Challenges using impulse drying and methods for image analysisThabot, Arnaud Henri 15 November 2007 (has links)
In about 30 years of experiments and development, impulse drying is now considered as a well known technology and a good candidate in the constant effort to save energy in the paper industry. The drying section is indeed the most expensive section in the process of paper production. However, this potential technology has a major disadvantage, stopping its implementation in the industry. Paper, which is a porous material with a variable compressibility, experienced a sudden release of energy at the nip opening during impulse drying. Under these conditions of high intensity process (both in temperature and pressure), the fiber mat has a tendency to delaminate. This web disruption is a critical issue against impulse drying.
This thesis comes up with a new approach to the problem. These last years, the technology itself has been addressed in this issue and many improvements have been reached in terms of energy release (heat transfer control, material coating ). The novel idea is then to investigate the inner structure of the paper once it has been coated with starch to a large extent (up to 10 or 20% of the relative basis weight). Starch is known for its large use in industry, but also its capability to expand under high temperature. Hence, both relative strength and bulking effects are investigated in this thesis, using numerous experiments with variable temperatures and pressures, along with ultrasonic testing and image analysis. We have the opportunity to appreciate the phenomenon of heat transfer and mass transport in the coated medium, while reaching promising results in terms of strength and bulk. These are finally investigated using scanning electron microscopy as a first step toward a pore expansion model for starch imbued handsheets.
|
306 |
Effects Of Different Batter Formulations On Physical And Chemical Properties Of Microwave And Conventionally Fried Chicken FingersBarutcu Mazi, Isil 01 December 2009 (has links) (PDF)
The main objective of this study was to determine the effects of batters containing various flour types and frying methods on physical and chemical properties of chicken fingers.
To determine the effects of different flour types, 30 % of the corn and wheat flour mix in control batter was replaced with chickpea, rice or soy flours. Frying was performed in microwave oven at 365 W (70 %) power level and at 180& / #61617 / 1° / C for different times. Samples were also fried in a conventional fryer at 180& / #61617 / 1° / C for comparison. The properties that were measured were coating pick-up and moisture content, oil content, color, hardness, porosity and acrylamide content of fried samples. In addition, microstructural analysis of batters and temperature distribution of fried samples during cooling were performed.
Moisture content of chicken fingers decreased whereas the darkness, porosity and hardness of samples increased with increasing microwave frying time. Using microwaves decreased frying time by 70 %. Samples fried for 1.5 min using microwave provided similar moisture and oil contents in the coating part as compared to conventionally fried ones for 5min. However, the chicken part of microwave fried sample had lower moisture content. Lighter colored samples with higher porosity and lower hardness values were obtained with microwave frying. In microwave frying, soy flour addition to batter formulation decreased the moisture loss and oil absorption as compared to control by 19.3% and 20.7%, respectively. The lowest hardness, the highest porosity and oil content were obtained with the addition of chickpea flour.
Flour type was not found to be effective on acrylamide content. Microwave frying provided lower acrylamide content as compared to those fried conventionally for all types of flours. The reduction in acrylamide level was the highest (34.5%) for rice flour containing batter. Color parameters of chicken fingers were not found to be a reliable indicator of acrylamide levels.
Different types of frying method and flours used in batter formulation resulted in differences in the microstructure of fried batter.
Variations in internal temperature distribution during cooling increased with frying time in both microwave and conventional frying. The sample fried in microwave oven for 1.5 min had a more nonuniform temperature distribution.
|
307 |
Quantitative methods to characterize the impregnation of a glass multifilament yarn by a cementitious matrixAljewifi, Hana, Fiorio, Bruno, Gallias, Jean-Louis 03 June 2009 (has links) (PDF)
This paper focuses on two experimental methods that give indicators linked to the impregnation level of the yarn / matrix interface, in the case of Textile Reinforced Concrete (TRC). These methods have been tested on three different glass yarns laid in a cementitious matrix, with three different impregnation levels resulting from the manufacturing process. The first method (comparative mercury intrusion porosity test) is based on the evaluation by mercury intrusion porosity of the pores volume associated to the porosity inside and near the yarn. The second method (flow test) consists in measuring the flow rate of water along the yarn, with imposed flow conditions. The physical parameters measured by these two methods are both related to the pore size and to the porosity of the yarn / matrix interface. The results of the two methods are discussed and drawn in parallel to a qualitative characterization of the yarn matrix interface made by scanning electron microscopy. As a result, the connection between the results of the two methods and the SEM characterization is studied. It is shown how these methods can participate to characterize the yarn impregnation. Limitations of the methods are also discussed.
|
308 |
A lithium-ion test cell for characterization of electrode materials and solid electrolyte interphaseGoel, Ekta, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
|
309 |
NATURAL GAS HYDRATES UP CLOSE: A COMPARISON OF GRAIN CHARACTERISTICS OF SAMPLES FROM MARINE AND PERMAFROST ENVIRONMENTS AS REVEALED BY CRYOGENIC SEMStern, Laura A., Kirby, Stephen H. 07 1900 (has links)
Using cryogenic SEM, we investigated the physical states of gas-hydrate-bearing samples
recovered by drill core from several localities including the SE India margin (NGHP Expedition
01), Cascadia margin (IODP Leg 311), Gulf of Mexico (RV Marion Dufresne 2002), and
Mackenzie River Delta (Mallik site, well 5L-38). Core material with a significant fraction of
preserved hydrate has only been obtained for cryogenic SEM investigation from relatively few
sites worldwide to date, yet certain consistent textural characteristics, as well as some clear
differences between sites have been observed. Gas hydrate in cores recovered from Cascadia,
Gulf of Mexico, and Mallik often occurs as a dense substrate with typical grain size of 30 to as
large as 200 μm. The hydrate often contains a significant fraction of isolated macropores that are
typically 5–100 μm in diameter and occupy 10-30 vol. % of the domain. In fine-grained sediment
sections of marine samples, gas hydrate commonly forms small pods or lenses with clay platelets
oriented sub-parallel around them, or as thin veins 50 to several hundred microns in thickness. In
some sections, hydrate grains are delineated by a NaCl-bearing selvage that forms thin rinds
along hydrate grain exteriors, presumably produced by salt exclusion during original hydrate
formation. Preliminary assessment of India NGHP-01 samples shows some regions consistent
with the observations described above, as well as other regions dominated by highly faceted
crystals that line the walls or interior of cavities where the hydrate grows unimpeded. Here, we
focus on gas hydrate grain morphology and microstructures, pore characteristics and distribution,
and the nature of the hydrate/sediment grain contacts of the recovered samples, comparing them
to each other and to laboratory-produced gas hydrates grown under known conditions.
|
310 |
A Study of the Chemical Interactions at the Interface Between Polymeric Powder/Fibre and White CementMacDonald, Jennifer Lynn 14 October 2010 (has links)
Concrete, due to its low cost, durability and fire resistance, is one of the world’s most
widely used construction materials. Concrete is typically reinforced with steel bars
and welded wire mesh. Since the cost of steel is increasing and steel corrosion is a
significant contributor to structural failure, it is advantageous to find an alternative
replacement reinforcement material which can not only replace the steel, but also
resist corrosion.
Over the past few decades, polymeric fibres have been used as concrete reinforcement.
The chemical bond between the polymeric fibre and the cementitious matrix
is an important factor in the fibre’s performance as a concrete reinforcement. Despite
the great importance of the chemical bonding at the polymeric fibre/concrete
interface, the chemical bonding at the interface is not well understood.
To investigate the chemical interactions between polymeric materials and concrete,
model systems of polymeric powder/white cement and polymeric fibre/white cement
were chosen, where white cement was chosen for its suitability for nuclear magnetic
resonance (NMR) experiments. The chemical interactions between poly(ethylenevinyl
acetate) (EVA), poly(ether imide) (PEI), and poly(vinylidene fluoride) (PVDF)
polymeric powders were studied via 13C NMR spectroscopy. It was found that EVA
admixture undergoes hydrolysis in a cementitious matrix and follows a pseudo-second
order kinetics model up to 32 days of cement hydration. PEI was also found to
undergo hydrolysis at the imide functional group in a cementitious matrix. PVDF
powder undergoes dehydrofluorination in the cementitious environment, producing a
brown coloured polymer which is a result of conjugation of the polymer backbone.
The interfacial transition zone between fluoropolymeric powder/white cement and
steel and polymeric fibres (high density polyethylene/polypropylene, poly(vinyl alcohol),
PEI, PVDF, and Nylon 6.6) was studied at short range using 19F, 27Al, and 43Ca
NMR spectroscopy and at long range using the scanning electron microscopy/energy
dispersive spectroscopy method. It was concluded that the chemistry of polymeric
fibres themselves can alter the surrounding interfacial transition zone such that the
calcium silicate hydrate favours a tobermorite or jennite-like structure, which could
contribute to a strong or weak interface.
|
Page generated in 0.0904 seconds