• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 24
  • 19
  • 12
  • 12
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 352
  • 352
  • 315
  • 93
  • 79
  • 76
  • 65
  • 58
  • 53
  • 47
  • 47
  • 47
  • 45
  • 41
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Growth and electronic properties of nanostructured epitaxial graphene on silicon carbide

Torrance, David Britt 13 January 2014 (has links)
The two-dimensional phase of carbon known as graphene is actively being pursued as a primary material in future electronic devices. The goals of this thesis are to investigate the growth and electronic properties of epitaxial graphene on SiC, with a particular focus on nanostructured graphene. The first part of this thesis examines the kinetics of graphene growth on SiC(0001) and SiC(0001 ̅) by high-temperature sublimation of the substrate using a custom-built, ultra-high vacuum induction furnace. A first-principles kinetic theory of silicon sublimation and mass-transfer is developed to describe the functional dependence of the graphene growth rate on the furnace temperature and pressure. This theory can be used to calibrate other graphene growth furnaces which employ confinement controlled sublimation. The final chapter in this thesis involves a careful study of self-organized epitaxial graphene nanoribbons (GNRs) on SiC(0001). Scanning tunneling microscopy of the sidewall GNRs confirms that these self-organized nanostructures are susceptible to overgrowth onto nearby SiC terraces. Atomic-scale imaging of the overgrown sidewall GNRs detected local strained regions in the nanoribbon crystal lattice, with strain coefficients as high as 15%. Scanning tunneling spectroscopy (STS) of these strained regions demonstrate that the graphene electronic local density of states is strongly affected by distortions in the crystal lattice. Room temperature STS in regions with a large strain gradient found local energy gaps as high as 400 meV. Controllable, strain-induced quantum states in epitaxial graphene on SiC could be utilized in new electronic devices. / Per request of the author and the advisor, and with the approval of the graduate office, the Acknowledgements page was replaced with an errata.
242

Fundamental studies into the catalytic properties of metal-oxide supported gold and copper nanoparticles

Carew, Alexander Jon January 2001 (has links)
No description available.
243

Molecular tectonics : supramolecular 2D nanopatterning of surfaces by self-assembly

Zhou, Hui January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
244

Spectroscopie tunnel de graphène épitaxié sur du rhénium supraconducteur / Scanning tunneling spectroscopy study of epitaxial graphene on superconducting rhenium

Tonnoir, Charlène 20 December 2013 (has links)
Obtenir une interface transparente entre le graphène et un supraconducteur s'est révélé être difficile et pourtant essentiel pour induire des corrélations supraconductrices dans le graphène par effet de proximité. Cette thèse présente une étude par spectroscopie tunnel (STS) à très basse température (50 mK) d'un système nouveau qui réalise ce bon couplage électronique en faisant croitre du graphène par épitaxie sur du rhénium supraconducteur. La fabrication et sélection des films minces de rhénium de haute qualité cristalline sont brièvement expliquées, suivies par le procédé de croissance CVD du graphène sur divers métaux et en particulier sur du rhénium. Les images topographiques obtenues par STM révèlent un moiré qui résulte de la différence de paramètre de maille entre le graphène et le rhénium. Nous identifions ce système à une monocouche de graphène en forte interaction avec le substrat, résultat corroboré par des calculs DFT. Des analyses STS dans une gamme d'énergie de plusieurs centaines de meV montrent une modulation spatiale de la densité d'états (DOS) à l'échelle du moiré, indiquant différentes forces de couplage entre les ‘collines' et les ‘vallées' du moiré. Les propriétés supraconductrices de l'échantillon en volume sont sondées par des mesures de transport, desquelles nous extrayons la température de transition Tc~2K et la longueur de cohérence supraconductrice ξ=18nm. Le gap supraconducteur est extrait de la DOS mesurée par STS à 50 mK (Δ=330µeV) et trouvé homogène à l'échelle du moiré. L'état mixte supraconducteur est étudié sous champ magnétique et un réseau de vortex d'Abrikosov est mis à jour. Enfin, une étude sur diverses morphologies de surface présente un effet de proximité supraconducteur latéral anormal, en contradiction avec les modèles existants. / Obtaining a transparent interface between graphene and a superconductor has proved to be very challenging and yet essential to induce superconducting correlations in graphene via the so-called proximity effect. This thesis presents a scanning tunneling spectroscopy (STS) study at very low temperature (50 mK) of a novel system achieving such a good electronic contact by the growth of epitaxial graphene on superconducting rhenium. The fabrication and selection of high-crystallographic quality rhenium thin films are briefly explained, followed by the CVD growth process of graphene on various metal substrates and in particular rhenium. STM topographic images reveal a moiré pattern due to the lattice mismatch between graphene and rhenium. We identify this system to a graphene monolayer in strong interaction with the underlying substrate, as corroborated by DFT calculations. STS analyses in the hundreds-meV energy range show a spatial modulation of the density of states (DOS) at the moiré scale, indicating different coupling strengths between ‘hills' and ‘valleys' regions. The bulk superconducting properties are probed by transport measurements, from which we extract the transition temperature Tc~2K and a superconducting coherence length ξ=18nm. The superconducting gap is extracted from the DOS at 50 mK (Δ=330µeV) and found homogeneous at the moiré scale. The superconducting mixed state is studied under magnetic field and an Abrikosov vortex-lattice is uncovered. Finally, a study on various surface morphologies exhibits an anomalous lateral superconducting proximity effect in contradiction with the existing models.
245

Lien entre structure et propriétés électroniques des moirés de graphène étudié par microscopie à effet tunnel / Link between structural and electronic properties of moirés of graphene studied by scanning tunneling microscopy

Huder, Loïc 29 November 2017 (has links)
Les dernières années ont vu l'avènement des couches cristallines bidimensionnelles, appelées matériaux 2D. L'exemple le plus connu est le graphène, d'autres étant le nitrure de bore hexagonal isolant et le diséléniure de niobium supraconducteur. Ces matériaux 2D peuvent être empilés de manière contrôlée sous la forme d'hétérostructures de van der Waals pour obtenir les propriétés électroniques désirées. L’une des plus simples hétérostructures de van der Waals est l'empilement de deux couches de graphène tournées. Cet empilement donne naissance à un moiré qui peut être vu comme un potentiel superpériodique dépendant de l'angle entre les deux couches. Les propriétés électroniques des couches tournées de graphène sont intimement liées à ce moiré.Le sujet de cette thèse est l'étude expérimentale du lien entre la structure et les propriétés électroniques des couches tournées de graphène par Microscopie et Spectroscopie à effet tunnel à basse température.Alors que l'effet de l'angle entre les couches sur les propriétés électroniques a déjà été étudié en détail, la modification de celles-ci par une déformation des couches n'a été envisagée que récemment. La première partie de ce travail expérimental étudie la modification par la déformation des propriétés électroniques de couches de graphène tournées d'un angle de 1.26° crûes sur carbure de silicium. La déformation en question est différente dans les deux couches et son effet apparait clairement dans la densité locale d'états électroniques du moiré. Contrairement à une déformation appliquée identiquement aux deux couches, une différence de déformations entre les couches (déformation relative) modifie fortement la structure de bandes même à faibles valeurs de déformations. Alors que la déformation relative était spontanément présente, la deuxième partie de cette thèse s'intéresse à l'effet d'une déformation appliquée directement aux couches de graphène. Cette déformation vient d'une interaction induite par l'approche de la pointe STM vers la surface de graphène. La modification active de la densité d'états qui en résulte dépend de la position de la pointe dans le moiré avec l'apparition d'instabilités périodiques lorsque la distance entre la pointe et l'échantillon est très faible.La troisième partie de cette thèse concerne l'étude d'un autre type de modification des propriétés électroniques consistant en l'induction de supraconductivité dans les couches de graphène. Cette modification est effectuée par une croissance du graphène en une seule étape sur du carbure de tantale supraconducteur. Les résultats montrent la formation d'une couche de carbure de tantale de grande qualité sur laquelle les couches de graphène forment des moirés. La mesure à basse température de la densité d'états de ces moirés montre la présence d'un effet de proximité supraconducteur induit par le carbure de tantale. / Recent years have seen the emergence of two-dimensional crystalline layers, called 2D materials. Examples include the well-known graphene, insulating hexagonal boron nitride and superconducting niobium diselenide. The stacking of these 2D materials can be controlled to achieve desirable electronic properties under the form of van der Waals heterostructures. One of the simplest van der Waals heterostructures is the misaligned stacking of two graphene layers. Twisted graphene layers show a moiré pattern which can be viewed as a superperiodic potential that depends on the twist angle. The electronic properties of the twisted graphene layers are strongly linked to this moiré pattern.The subject of the present thesis is the experimental study of the link between the structural and the electronic properties of twisted graphene layers by means of low-temperature Scanning Tunneling Microscopy and Spectroscopy (STM/STS).While the effect of the twist angle has already been studied in great details, the modulation of the electronic properties by the deformation of the layers has been explored only recently. In the first part of this experimental work, a strain-driven modification of the electronic properties is probed in graphene layers with a twist angle of 1.26° grown on silicon carbide. The determined strain is found to be different in the two layers leading to a clear signature in the local electronic density of states of the moiré even at low strain magnitudes. Contrary to a strain applied in the two layers, this difference of strain between the layers (relative strain) modifies strongly the electronic band structure even at low strain magnitudes. While this relative strain is natively present, the second part of the work explores the effect of an applied strain in the layers. This is realized by approaching the STM tip to the graphene surface to trigger an interaction between the two. The resulting active modification of the density of states is shown to depend on the position on the moiré, leading to periodic instabilities at very low tip-sample distances.In the third part of the work, another type of modification of the electronic properties is studied when superconductivity was induced in the graphene layers. This is done by growing graphene on superconducting tantalum carbide in a single-step annealing. The results show the formation of a high-quality tantalum carbide layer on which graphene layers form moiré patterns. The low-temperature density of states of these moirés show evidence of a superconducting proximity effect induced by the tantalum carbide.
246

Ultra-Thin Ag Films on the Sn/Si(111)-√3×√3 Surface Studied by STM / Ultratunna Ag-filmer på Sn/Si(111)-√3×√3 ytan studerat med STM

Lavén, Rasmus January 2018 (has links)
The growth of atomically flat silver films on Si(111) usually requires a two-step growth, including deposition at low temperature (≈100 K) followed by slowly annealing to room temperature. In addition, flat silver films are usually only obtained on Si(111) for film thicknesses larger than the critical thickness of 6 monolayer. In this work, Ag thin film formation at ambient temperature on Sn/Si(111)-√3×√3 has been investigated experimentally using a combination of scanning tunneling microscopy, scanning tunneling spectroscopy and low-energy electron diffraction. The first buffer layer, probably consisting of both Ag and Sn, formed a partially ordered structure consisting of atomic rows which mainly followed the high-symmetry directions of the underlying Si(111) lattice. From 3 ML coverage, an atomically flat Ag film was formed. Low-energy electron diffraction confirmed that the films grew in the [111]-direction. This shows that atomically flat Ag films as thin as 3 ML can be grown on Sn/Si(111)-√3×√3 by conventional deposition at room temperature. The electronic structures of the films were studied for a range of different coverages by scanning tunneling spectroscopy. The normalized tunneling conductance showed quantum well states in the occupied electronic states, which moved towards the Fermi energy with increasing film thicknesses.
247

Moléculas orgânicas sobre superfícies metálicas : uma investigação teórica / Organic molecules on metalic surfaces : a thoretical investigation

Brunetto, Gustavo, 1983- 07 August 2009 (has links)
Orientador: Douglas Soares Galvão / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica "Gleb Wataghin" / Made available in DSpace on 2018-08-14T05:39:30Z (GMT). No. of bitstreams: 1 Brunetto_Gustavo_M.pdf: 28278571 bytes, checksum: 7cba216c6b133f4a224e2155791937f4 (MD5) Previous issue date: 2009 / Resumo: Recentemente, a primeira nanoroda molecular foi caracterizada a partir de experimentos com o microscópio de tunelamento eletrônico (STM). Foi demonstrado que a molécula de hidrocarboneto (C44H24) especificamente desenhada poderia rolar sobre a superfície de cobre ao longo da direção [110] da superfície. A molécula consiste em duas rodas baseadas no grupo triptycene as quais são conectadas por um eixo. Nós reportamos um estudo teórico da simulação desse processo. Usamos métodos ab initio (DMol 3) e de dinâmica molecular clássica (UFF). Consideramos diferentes orientações cristalográficas ([111], [110], e [100]) para a superfície de cobre, a fim de determinar como estas diferentes orientações afetam o processo de rolamento molecular. Nossos resultados estão em boa acordância com os dados experimentais disponíveis. As simulações mostraram que o mecanismo de rolamento só é possível para a direção [110]. Para as outras direções ([111] e [100]) a superfície é muito suave e não pode prover o torque necessário para o processo de rolamento. Para estes casos a molécula somente desliza (movimento de translação), sem rolar quando interage com a ponta do microscópio. Para a direção [110] a separação espacial entre as colunas de cobre é suficiente para travar a molécula e criar um torque. Além da superfície correta, a posição relativa da molécula sobre a superfície é muito importante. A molécula deve estar com seu eixo principal paralelo à direção [110]. Este efeito de comensurabilidade, entre a molécula e a superfície, é similar a difusão seletiva na superfície recentemente observada para outras classes de moléculas orgânicas. Os perfis experimentais observados para o empuramento, puxamento e rolamento também podem ser explicados em termos destas características geométricas entre a molécula e as diferentes direções cristalográficas do cobre / Abstract: Recently, the first molecular nanowheel was characterized with scanning tunneling micro-scope experiments. It was demonstrated that a specifically designed hydrocarbon molecule (C44H24) could roll over a copper substrate along the [110] direction of a surface. The molecule consists in two wheels based on two triptycene groups which are connected by an axle. We report a theoretical study of the simulations of this process. We used ab initio (DMol 3) and classical molecular dynamics methods (UFF). We have considered different crystallographic orientations ([111], [110], and [100]) for the copper surface, in order to determine how these different orientations affect the molecular rolling processes. Our results are in good agreement with the available experimentally data. The simulations showed that the rolling mechanism is only possible for the [110] direction. For the others directions ([111] and [100]) the surfaces are too smooth and cannot provide the necessary torque to the rolling process. For these cases the molecule just slides (translational movement), without rolling when interact with the STM tip. For the [110] direction the spatial separation among rows of copper atoms is enough to trap the molecule and to create a torque. Besides the correct surface the relative position of the molecule on the surface is very important. The molecule should be with its main axis in the parallel direction to [110]. This commensurability effect, between the molecule and the surface, is similar to the surface selective diffusion recently observed for other classes of organic molecules. The experimental observed pushing, pulling, and rolling profiles can also be explained in terms of these geometrical features between the molecule and the different Cu crystallographic directions / Mestrado / Mestre em Física
248

Construção de um sistema de epitaxia por feixe molecular / Building of a molecular beam epitaxy system

Fiorentini, Giovanni Alessandro 29 May 2007 (has links)
Orientadores: Marco Antonio Robert Alves, Gilberto Medeiros Ribeiro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T09:04:08Z (GMT). No. of bitstreams: 1 Fiorentini_GiovanniAlessandro_M.pdf: 8940577 bytes, checksum: aa3711a9b5e0821a30c942ef0760c8f7 (MD5) Previous issue date: 2008 / Resumo: O crescimento epitaxial de nanoestruturas semicondutoras e metálicas é algo de grande interesse atualmente em ciência e tecnologia devido às propriedades singulares apresentadas pela matéria na escala nanométrica. Esta dissertação teve como objetivo principal a construção de um sistema de crescimento epitaxial baseado na técnica de epitaxia por feixe molecular (MBE, do inglês Molecular Beam Epitaxy). Inicialmente, aspectos básicos sobre a física e a tecnologia envolvidas em um sistema de MBE foram analisados. O que é MBE e quais são os princípios que governam seu funcionamento são perguntas intrigantes a um aluno do curso de engenharia elétrica. No decorrer do trabalho, todo o complexo sistema vácuo (bombeamento e monitoramento) teve de ser cuidadosamente montado e ajustado até que se obtivesse as condições ótimas de trabalho dados os componentes disponíveis bem como suas características e limitações. Conceitos teóricos e práticos foram aplicados de forma a tornar o sistema o mais simples, eficiente e amigável possível. As evaporadoras por feixe de elétrons foram montadas, testadas e ajustadas até que se pudesse alcançar os parâmetros de funcionamento desejados para estes dispositivos tão importantes dentro de um sistema de MBE. Toda a instrumentação envolvida no acionamento e no monitoramento destas fontes foi desenvolvido com base em conceitos simples de eletrônica analógica e, em alguns momentos, digital, além de soluções de software, sempre usando LabView. Os resultados do trabalho de construção do sistema puderam ser caracterizados posteriormente de maneira a aferir a confiabilidade dos parâmetros utilizados e das amostras crescidas. Estes resultados foram baseados em técnicas de microscopia de varredura por pontas (SPM, do inglês Scanning Probe Microscopy), as quais forneceram informações detalhadas sobre as nanoestruturas formadas e as superfícies dos substratos, dados estes muito importantes e que podem ser utilizados como indicadores das codições de funcionamento do sistema de crescimento / Abstract: The epitaxial growth of semiconductor and metallic nanostructures is a target of great interest nowadays in science and technology due to the unique properties presented by the matter at the nanometer scale. This dissertation had as the main goal the construction of a system for epitaxial growth based on the Molecular Beam Epitaxy (MBE) technique. First of all, basic aspects about the physics and the technology involved in a MBE system were analyzed. What is MBE and what are the principles that govern its operation are intriguing questions for an electrical engineering student. During this work, the entire complex vacuum system (pumping and monitoring) had to be carefully mounted and adjusted until the optimum conditions were obtained for the available components as well as their characteristics and limitations. Theoretical and practical concepts were applied so that the system become as simple, efficient and friendly as possible. The electron beam evaporation sources were mounted, tested and adjusted until the desired working parameters for these important devices were achieved. The whole instrumentation involved in the driving and in the monitoring of these sources was developed based on simple concepts of analog and, in some cases, digital electronics, besides software solutions, always using LabView. The performance of the system was evaluated by structural characterization using scanning probe microscopy techniques (SPM), which gave detailed information about the formed nanostructures and the substrates surfaces. These data can be used as indicators of the growth system operation conditions / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
249

Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy and spectroscopy

Nag, Pranab Kumar 11 December 2017 (has links) (PDF)
In this thesis, the electronic properties in superconducting LiFeAs single crystal are investigated using low temperature scanning tunneling microscopy and spectroscopy (STM/S) at various temperatures. For this purpose, the differential conductance (dI/dV) measured by STS which is directly proportional to the local density of states (LDOS) of the sample to the sub-atomic precision, is used together with the topography information. The dI/dV spectra within the ±1 V energy range reveal a characteristic feature at around -350 mV to -400 mV in stoichiometric LiFeAs. This feature seems to be a universal property among all the Fe-based high temperature superconductors, because it is also found in Fe0.965Se1.035 and NaFe0.975Co0.025As single crystals at the energy of -210 mV and -200 mV, respectively. The temperature dependent spectroscopy data averaged over a spatially fixed clean area of 2 nm × 2 nm are successfully executed between 5 K and 20 K. The two distinct superconducting phases with critical temperatures Tc = 16 K and 18 K are observed. In addition, the distance between the dip position outside the superconducting gap and the superconducting coherence peak in the spectra remains temperature independent which confirms that it is not connected to an antiferromagnetic (AFM) spin resonance. The temperature dependent spectra have been measured between 5 K and 61 K within the energy range of ±100 mV as well. The hump structure at 42 mV tends to disappear around 60 K from unknown origin. The temperature dependent quasiparticle interference (QPI) has been studied within the temperature range between 6.7 K and 25 K and analyzed by the Fourier transformation of the measured spectroscopic maps. The dispersion plots in momentum space as a function of temperature show an enhancement of QPI intensity (±5.5 mV) within the superconducting gap at the Fermi level at 6.7 K near q ~ 0. This is interpreted on the basis of Andreev bound state. In both polarities outside of this, a depletion of QPI intensity is noticed between 5.5 mV and around 9 mV. At positive energies, the QPI intensity becomes very rich above 9 mV. The size of the enhanced QPI intensity near the Fermi level, and the edge of the rich QPI intensity beyond 9 mV are found to behave like superconducting order parameter with rising of temperature. Furthermore, an energy mode peaked at around 14 mV appears in the integrated QPI intensity below superconducting Tc (6.7 K). This is consistent with the observed peak at 1st derivative of the dI/dV spectra. In both of these cases, such 14 mV peak is suppressed at normal state (25 K). This mode is therefore directly related to superconductivity in LiFeAs. The off-stoichiometric LiFeAs single crystal with superconducting Tc of 6.5 K has a 10 mV rigid band shift of the Fermi level towards electron doping. The absence of the rich QPI intensity between 9 mV and 17 mV is found compared to the stoichiometric LiFeAs, and hence the 14 mV mode is absent here. This brings us to conclude once more time that such 14 mV energy mode is relevant for superconductivity in LiFeAs.
250

Spectroscopie tunnel à très basse température du graphène épitaxié sur SiC / Low-temperature scanning tunneling specstroscopy of epitaxial graphene grown on SiC

Le Quang, Toai 18 March 2016 (has links)
Les couches de graphene épitaxiées sur la face carbone du carbure de silicium sont tournées les unes par rapport aux autres. Cette rotation préserve la structure de bande linéaire du graphene mono-couche et permet un transport balistique des porteurs de charge. Parmi les propriétés intéressantes développées dans le chapitre 2, la possibilité de former de pleines couches de graphene sur le substrat isolant qu'est le SiC est un avantage majeur de cette technique comparé aux autres méthodes de croissance du graphene (exfoliation et épitaxie en phase vapeur sur métaux). Les grandes surfaces produites permettent aux expérimentateurs de faire facilement des mesures STM car la localisation de la partie utile de l’échantillon n'est pas un problème dans ce cas.Dans ce travail de thèse, j'ai réalisé la croissance de graphene sur la face carbone du SiC dans le but d'étudier la supraconductivité induite dans le graphene par la proximité d'un supraconducteur. Cette supraconductivité induite dont le principe expliqué dans le chapitre 3 se développe d'autant plus loin de l'interface que le matériau non supraconducteur possède un grand libre parcours moyen. D'où notre choix du graphene. Dans le chapitre 3 je présente aussi les efforts que j'ai mené pour fabriquer des jonctions graphene/supraconducteur par une technique de lithographie propre : la lithographie par microsphères. Cette méthode utilise des micro-sphères de silice comme masque dur durant le dépôt par évaporation d'un matériaux supraconducteur tel le vanadium. Malgré la propreté de cette méthode telle qu'avérée par les images STM des échantillons, nous n'avons pas réussi à induire la supraconductivité dans le graphene. Suite à ce résultat négatif, nous avons développé une seconde approche décrite dans le chapitre 4. Un matériau supraconducteur réfractaire, le niobium, est cette fois-ci déposé sur le substrat avant la croissance du graphene. A l'issue de la croissance, nous avons eu la surprise de constater que la température critique du matériaux supraconducteur s'était élevée de 7 à 12 K. Cela s'explique par la carburation du Niobium lors du recuit. Par ailleurs, nous avons bien démontré que des couches graphitiques sont aussi crues sur le NbC permettant ainsi de réaliser des jonctions. Néanmoins, nous n'avons à nouveau pas réussi à observer de supraconductivité induite dans le graphene.Outre les propriétés intéressantes pour l'étude de la supraconductivité induite, les couches de graphene en rotation constituent en elle même un sujet d'étude intéressant. En effet, la densité d'état de ce système présente des singularités de van Hove dont la position en énergie dépend de l'angle de rotation. Ce système ouvre donc la porte à l'étude de la physique associée à ces singularités (supraconductivité, magnétisme) à des énergies accessibles par dopage électrostatique. De plus, une localisation des fonctions d'onde électroniques a été prédite pour les faibles angles de rotation et cette localisation a été confirmée par des résultats expérimentaux préliminaires. Cependant, il manquait une étude systématique des propriétés électriques des systèmes à faible angle de rotation. Les mesures que j'ai réalisé dans ce régime sont présentées dans la dernière partie de ce mémoire. Ces mesures de spectroscopie sont comparées à un modèle de liaison fortes. Le modèle sans désordre et en présence de désordre ne permettent pas de décrire correctement les expériences menées pour des angles inférieurs à 2°. Mon travail souligne qu'une physique riche existe aux faibles angles de rotation et qu'il reste encore beaucoup de travail à faire pour la comprendre. / Epitaxial graphene on carbon-terminated face (C-face) of SiC substrates consists of graphene layers rotated from each other. This rotation of layers grants this material single-layer like properties, such as a linear dispersion band structure and a ballistic transport. As discussed in chapter 2, the full-wafer size and the insulating SiC substrate are two of many advantages of graphene films grown on SiC compared to those prepared differently (exfoliation method and chemical vapour deposition method). These two advantages allow experimentalists to perform scanning tunneling microscopic (STM) experiments and to study graphene properties easily.In this PhD work, we grew graphene on C-face of SiC substrates to investigate the induced superconducting proximity effect in ballistic regime. The physics of this phenomenon is explained in chapter 3 as the formation of time-reversed pairs of electrons and holes. Concerning the superconducting materials, we relied on vanadium and niobium carbide to induce the proximity effect. These two approaches are discussed in detail in chapter 3 (for V) and chapter 4 (for NbC). STM characterizations performed on fabricated samples show a superconducting gap in V and a part of the NbC surface, but no induced gap in graphene. Several possible reasons, like a poor interface between superconductors and graphene, the unability of the STM to reach the true graphene-superconductor interface, and the degradation of the surface of NbC, were suggested and discussed. However, our high-quality epitaxial NbC films meet the requirements for hot-electron bolometers.Besides their single-layer like properties, the rotation of layers also leads to tunable van Hove singularities and the localization of states, which are thoroughly discussed in chapter 5 and 6. Once one of these singularities stays at the Fermi level, graphene is predicted to gain intrinsic superconductivity and magnetic properties. This condition can be achieved by reducing the rotation angle towards zero, as these singularities converge to the Dirac point or the Fermi level for undoped graphene. In addition to the intrinsic superconductivity, the localization of states also appears for layers rotated with a small angle, as observed in several STM experiments. Experimentally, we found regions in rotated layers, which appear as periodic Moiré patterns in our STM images. The rotation angles were estimated from the Fast Fourier Transform of the recorded STM images. Comparing our experimental results with tight-binding calculations for disorder-free layers rotated with the same angles leads to a qualitatively good agreement for the positions of van Hove peaks. However, the appearance of new peaks in proximity to the Dirac point for layers rotated with θ=1.5º and a spatial evolution of of spectroscopic features for the small rotation angles cannot be explained by the calculations for disorder-free layers. In order to explain these two phenomena, we considered the influence of disorder. This indeed improved the agreement between theoretical and experimental results. But, since no electronic disorder could be evidenced from our STM images, other explanations, like strain, need to be considered too.

Page generated in 0.1158 seconds