• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 20
  • 17
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 308
  • 308
  • 308
  • 80
  • 74
  • 63
  • 56
  • 54
  • 46
  • 45
  • 44
  • 42
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Atomic scale properties of epitaxial graphene grown on sic(0001)

Rutter, Gregory Michael 17 November 2008 (has links)
Graphene, a honeycomb lattice of sp2-bonded carbon atoms, has received considerable attention in the scientific community due to its unique electronic properties. Distinct symmetries of the graphene wave functions lead to unusual quantum properties, such as a unique half-integer quantum Hall effect. As an added consequence of these symmetries, back-scattering in graphene is strongly prohibited leading to long coherence lengths of carriers. These charge carriers at low energy exhibit linear energy-momentum dispersion, much like neutrinos. Thus, carriers in graphene can be described as massless Dirac fermions. Graphene grown epitaxially on semiconducting substrates offers the possibility of large-scale production and deterministic patterning of graphene for nanoelectronics. In this work, epitaxial graphene is created on SiC(0001) by annealing in vacuum. Sequential scanning tunneling microscopy (STM) and spectroscopy (STS) are performed in ultrahigh vacuum at a temperature of 4.2 K and 300 K. These atomic-scale studies address the growth, interfacial properties, stacking order, and quasiparticle coherence in epitaxial graphene. STM topographic images show the atomic structure of successive graphene layers on the SiC substrate, as well as the character of defects and adatoms within and below the graphene plane. STS differential conductance (dI/dV) maps provide spatially and energy resolved snapshots of the local density of states. Such maps clearly show that scattering from atomic defects in graphene gives rise to energy-dependent standing wave patterns. We derive the carrier energy dispersion of epitaxial graphene from these data sets by quantifying the dominant wave vectors of the standing waves for each tunneling bias.
172

Déposition des molécules de ferrocène sur une surface de Cu(111) et modifications des états d'interfaces à la suite d'une déposition d'atomes métalliques : étude par dynamique moléculaire par premiers principes / Ferrocene molecular deposition on Cu (111) surface and the interface states after deposition of metal atoms : first principles molecular dynamics study

Mbongo Djimbi, Duval 12 October 2012 (has links)
Dans cette thèse, l'étude de la dépostion des molécules de ferrocène sur un substrat de Cu(111) par des simulations de dynamique moléculaire par premiers principes, en particulier, la dynamique moléculaire utilisant l'approche de Born-Oppenheimer (BOMD: Born-Oppenheimer Molecular Dynamics) et celle utilisant la fonctionnelle de l'énergie libre (FEMD: Free Energy Molecular Dynamics), combinées avec les études expérimentales par microscopie à effet tunnel (STM) à basse température et à courant constant ont montré que ces molécules de ferrocène peuvent être physisorbées sur un substrat de cuivre sans donner lieu à une dissociation moléculaire. Ce qui constitue un système idéal pour étudier la dynamique des états d'interfaces et leur réactivité par rapport à la déposition d’atomes métalliques. En particulier, la déposition d'un atome de Cuivre au dessus d'une molécule de ferrocène équilibrée sur le substrat de cuivre, conduit à un transfert de charges de cet atomes vers le substrat de Cu(111). On montre aussi que ces états d'interfaces ont le comportement bidimensionnel d'un gas d'électrons libres. / First-principles simulations studies, in particular Born-Oppenheimer molecular dynamics (BOMD) and free energy molecular dynamics (FEMD), combined with low-temperature scanning tunneling microscopy (STM) and spectroscopy reveal a non dissociative physisorption of ferrocene molecules on a Cu(111) surface, giving rise to ordered molecular layers. At the interface, a 2D-like electronic band is found, which shows an identical dispersion as the Cu(111) Shockley surface-state band. Subsequent deposition of Cu atoms forms charged organometallic compounds that localize interface-state electrons.
173

Theoretical modeling of scanning tunneling microscopy

Gustafsson, Alexander January 2017 (has links)
The main body of this thesis describes how to calculate scanning tunneling microscopy (STM) images from first-principles methods. The theory is based on localized orbital density functional theory (DFT), whose limitations for large-vacuum STM models are resolved by propagating localized-basis wave functions close to the surface into the vacuum region in real space. A finite difference approximation is used to define the vacuum Hamiltonian, from which accurate vacuum wave functions are calculated using equations based on standard single-particle Green’s function techniques, and ultimately used to compute the conductance. By averaging over the lateral reciprocal space, the theory is compared to a series of high-quality experiments in the low- bias limit, concerning copper surfaces with adsorbed carbon monoxide (CO) species and adsorbate atoms, scanned by pure and CO-functionalized copper tips. The theory compares well to the experiments, and allows for further insights into the elastic tunneling regime. A second significant project in this thesis concerns first-principles calculations of a simple chemical reaction of a hydroxyl (oxygen-deuterium) monomer adsorbed on a copper surface. The reaction mechanism is provided by tunneling electrons that, via a finite electron-vibration coupling, trigger the deuterium atom to flip between two nearly identical configurational states along a frustrated rotational motion. The theory suggests that the reaction primarily occurs via nuclear tunneling for the deuterium atom through the estimated reaction barrier, and that over-barrier ladder climbing processes are unlikely.
174

Microscopic tunneling experiments on atomic impurities in graphene and on magnetic thin films

Scheffler, Martha 16 July 2015 (has links)
This thesis presents investigations on hydrogenated graphene by scanning tunneling microscopy and spectroscopy (STM/STS) as well as the implementation of spin-polarized STM. Preparation processes for a magnetic standard sample and spin-sensitive chromium tips are developed. The measurements on graphene reveal specific hydrogen adsorption sites in low coverage and the formation of a pattern at higher coverage. Both is found to be in agreement with previous predictions and calculations. Upon hydrogenation, an impurity midgap state emerges in the density of states which is measured directly for the first time. Complementing angle resolved photoemission experiments confirm that this state is dispersionless over the whole Brillouin zone. A routine is developed to prepare the standard sample system of ultra-thin iron films on tungsten (Fe/W(110)). Investigations on this system confirm the magnetic properties known from literature, including the presence of a spin spiral, and prove that it is well suited for the characterization of spin-polarized tips. Different approaches for the preparation of tips from the antiferromagnetic material chromium are tested. Among these, a promising new method is presented: The coating of crystalline chromium tips with fresh chromium material suggests reproducibility of the tip characteristics. The performance of the produced tips in STM measurements is excellent in regard to a fixed spin-polarization, high resolution and stability. Especially, a recovery of the tip magnetization direction proposed in this thesis makes this new preparation method superior to all processes yielding antiferromagnetic tips reported so far.:1 Introduction 2 Basics 2.1 Scanning tunneling microscopy 2.2 Spin-polarized STM – access to magnetic information 2.3 Measurement setup 3 Probing local hydrogen impurities in quasi-free-standing graphene 3.1 Functionalization of graphene 3.2 In-situ fabrication of quasi-free-standing graphene and its functionalization 3.3 Interpretation of the results 3.4 Short summary 4 Chromium tips for spin-polarized tunneling experiments 4.1 Magnetism at the nanoscale 4.2 Growth and properties of Fe/W(110) 4.3 Preparation of tips with outstanding properties 4.4 Short summary 5 Summary and outlook / Inhalt der vorliegenden Arbeit sind Untersuchungen von hydogeniertem Graphen mittels Rastertunnelmikroskopie und -spektroskopie (RTM/RTS) sowie die Einführung spin-polarisierter RTM. Im Rahmen dessen wurden Präparationsprozesse für magnetische Standardproben und spin-sensitive Chrom-Spitzen entwickelt. Die Messungen an Graphen zeigen spezifische Wasserstoff-Adsorptionsstellen bei geringer Bedeckung und die Ausbildung eines Musters bei höherer Bedeckung, jeweils in Übereinstimmung mit Vorhersagen und Berechnungen. Der durch Hydrogenierung entstehende Störstellenzustand in der Bandlücke der Zustandsdichte wurde zum ersten Mal direkt gemessen. Ergänzende winkelaufgelöste Photoelektronenspektroskopieexperimente bestätigen, dass dieser Zustand in der gesamten Brillouinzone dispersionsfrei ist. Ein Verfahren zur Herstellung magnetischer Standardproben aus ultradünnen Eisenfilmen auf Wolfram (Fe/W(110)) wurde entwickelt. RTM-Untersuchungen an diesem System bestätigen die bereits aus der Literatur bekannten magnetischen Eigenschaften, insbesondere das Vorhandensein einer Spinspirale. Damit ist Fe/W(110) hervorragend geeignet für die Charakterisierung spin-polarisierter Spitzen. Verschiedene Ansätze, die zur Herstellung von Spitzen aus dem antiferromagnetischen Material Chrom verfolgt wurden, werden präsentiert, darunter auch eine vielversprechende neue Methode: Das Aufwachsen eines frischen Chromfilms auf kristalline Spitzen desselben Materials verspricht eine Reproduzierbarkeit von Spitzeneigenschaften. Der Einsatz von so hergestellten Spitzen in RTMMessungen ist geprägt von einer festgelegten Spin-Polarisation, hohem Auflösungsvermögen und Stabilität. Insbesondere die mögliche Reproduzierbarkeit der Magnetisierungsrichtung, die in dieser Arbeit diskutiert wird, macht diese Methode allen bisher berichteten Herstellungprozessen antiferromagnetischer Spitzen überlegen.:1 Introduction 2 Basics 2.1 Scanning tunneling microscopy 2.2 Spin-polarized STM – access to magnetic information 2.3 Measurement setup 3 Probing local hydrogen impurities in quasi-free-standing graphene 3.1 Functionalization of graphene 3.2 In-situ fabrication of quasi-free-standing graphene and its functionalization 3.3 Interpretation of the results 3.4 Short summary 4 Chromium tips for spin-polarized tunneling experiments 4.1 Magnetism at the nanoscale 4.2 Growth and properties of Fe/W(110) 4.3 Preparation of tips with outstanding properties 4.4 Short summary 5 Summary and outlook
175

Inelastic STM as a Tool for the Electronic Manipulation of Single Molecules

Kühne, Tim 13 December 2021 (has links)
For the investigation of single molecules on surfaces, STM under UHV and at low temperatures is the experimental technique of choice. Inelastic STM is, furthermore, able to manipulate the target structures and to induce chemical reactions or to control single molecule mechanics precisely. This thesis presents inelastic STM experiments on three different molecules as a tool for the electronic manipulation at a single molecule level. The first part of this work concerns the on-surface synthesis of dodecacene, the longest acene molecule obtained so far. Acenes as smallest zigzag edge graphene nanoribbons and model 1D electronic system play an important role in both experimental and theoretical science. Due to the high reactivity and low solubility of long acenes, precursor molecules were deoxygenated step wise in an on-surface reaction triggered by inelastic tunneling and through annealing at increasing temperatures. The molecular structure was proven by high resolution STM employing a CO functionalized tip. Additionally, the electronic states of the molecule were observed in the energy spectrum by STS and their spatial distribution was measured in dI/dV maps. The increase in the band gap compared to shorter acenes was explained by increasing contributions of multiradical states to the electronic states and higher orbitals participating in virtual tunneling states. In the second part of this work, the inelastic tunneling effect was used to investigate the conversion of electrical into mechanical energy in azulene derivatives carrying a large dipole moment. Metal organic complexes consisting of gold adatoms and pristine as well as cleaved molecules were formed upon evaporation of BCA. These structures were identified with the aid of theoretical calculations. Voltage pulse experiments at different tunneling resistance revealed that the electric field in combination with the charge distribution of the structures is the origin of the motion. Metal organic complexes of cleaved molecules could be moved on the surface in a controlled way and driven along an arbitrarily chosen parcours. The third part of this work concerns the investigation of DMBI-P molecules as rotors for molecular machines. Demethylation during evaporation was used to create an open radical bond stably anchoring the molecule on the surface. This was utilized for a step wise rotation where the direction is controlled by the voltage sign and chirality of the molecule on the surface. A C-H stretch mode was identified as its origin, serving as energy entry channel excited by inelastic tunneling electrons. Temperature dependent measurements and theoretical calculations yielded the potential barrier for the rotation. / Rastertunnelmikroskopie (RTM) unter UHV Bedingungen und bei tiefen Temperaturen ist die experimentelle Methode der Wahl zur Untersuchung von Einzelmolekülen auf Oberflächen. Darüber hinaus ist inelastische RTM in der Lage, die Zielstrukturen zu manipulieren und chemische Reaktionen auszulösen oder die Mechanik der einzelnen Moleküle präzise zu kontrollieren. Diese Dissertation behandelt inelastische RTM-Experimente an drei verschiedenen Molekülen als Werkzeug zur elektronischen Manipulation einzelner Moleküle. Der erste Teil der Arbeit behandelt die Oberflächensynthese von Dodecacen, des längsten bisher erzeugten Acens. Als kleinste Graphen-Nanobänder mit Zickzack-Rand und Modell für eindimensionale elektronische Systeme spielen Acene sowohl in Theorie als auch Experimentalphysik eine wichtige Rolle. Aufgrund der hohen Reaktivität und geringen Löslichkeit langer Acene wurden Vorläufermoleküle sowohl durch inelastisches Tunneln als auch durch Heizen des Substrates schrittweise deoxygeniert. Die Molekülstruktur wurde durch hochaufgelöste RTM mittels einer CO-funktionalisierten Spitze nachgewiesen. Zusätzlich konnten die elektronischen Zustände des Moleküls im Energiespektrum identifiziert und ihre räumliche Verteilung in dI/dV-Karten festgehalten werden. Die Vergrößerung der Bandlücke im Vergleich zu kürzeren Acenen konnte hierbei durch zunehmenden Einfluss multiradikaler Zustände auf den Grundzustand des Moleküls und den Beitrag höherer Molekülorbitale zu den virtuellen Tunnelzuständen erklärt werden. Im zweiten Teil dieser Arbeit wird die inelastische RTM dazu genutzt, um die Umwandlung von elektrischer Energie in mechanische mittels Azulen-Derivaten mit großem Dipolmoment zu untersuchen. Bei der Verdampfung bilden diese metallorganische Komplexe aus Goldatomen und sowohl intakten als auch gespaltenen Molekülen. Deren Strukturen wurden mit Hilfe von Berechnungen identifiziert. Experimente mit Spannungspulsen bei unterschiedlichen Tunnelwiderständen enthüllten das elektrische Feld in Kombination mit der Ladungsverteilung der Strukturen als Ursprung der Bewegung. Die metallorganischen Komplexe aus gespaltenen Molekülen konnten zielgerichtet auf der Oberfläche durch einen zufällig gewählten Parcours bewegt werden. Der dritte Teil dieser Arbeit behandelt die Untersuchung von DMBI-P Molekülen zur Verwendung als Rotoren für molekulare Maschinen. Eine Demethylierung während der Verdampfung erzeugt eine offene Bindung, die das Molekül stabil auf der Oberfläche verankert. Dies wurde für eine schrittweise Rotation genutzt, deren Richtung durch das Vorzeichen der Spannung und die Chiralität auf der Oberfläche kontrolliert werden konnte. Eine C-H Streckschwingung dient hierbei als Eintrittskanal der durch inelastische Elektronen bereitgestellten Energie. Temperaturabhängige Messungen und theoretische Berechnungen lieferten die Potentialbarriere für die Rotation.
176

<i>In-situ</i> scanning tunneling microscopy studies of the SEI formation on graphite anodes in propylene carbonate

Dehiwala Liyanage, Chamathka H. January 2019 (has links)
No description available.
177

Modeling of non-equilibrium scanning probe microscopy

Gustafsson, Alexander January 2015 (has links)
The work in this thesis is basically divided into two related but separate investigations. The first part treats simple chemical reactions of adsorbate molecules on metallic surfaces, induced by means of a scanning tunneling probe (STM). The investigation serves as a parameter free extension to existing theories. The theoretical framework is based on a combination of density functional theory (DFT) and non-equilibrium Green's functions (NEGF). Tunneling electrons that pass the adsorbate molecule are assumed to heat up the molecule, and excite vibrations that directly correspond to the reaction coordinate. The theory is demonstrated for an OD molecule adsorbed on a bridge site on a Cu(110) surface, and critically compared to the corresponding experimental results. Both reaction rates and pathways are deduced, opening up the understanding of energy transfer between different configurational geometries, and suggests a deeper insight, and ultimately a higher control of the behaviour of adsorbate molecules on surfaces. The second part describes a method to calculate STM images in the low bias regime in order to overcome the limitations of localized orbital DFT in the weak coupling limit, i.e., for large vacuum gaps between a tip and the adsorbate molecule. The theory is based on Bardeen's approach to tunneling, where the orbitals computed by DFT are used together with the single-particle Green's function formalism, to accurately describe the orbitals far away from the surface/tip. In particular, the theory successfully reproduces the experimentally well-observed characteristic dip in the tunneling current for a carbon monoxide (CO) molecule adsorbed on a Cu(111) surface. Constant height/current STM images provide direct comparisons to experiments, and from the developed method further insights into elastic tunneling are gained.
178

Magnetic and Interfacial Properties of the Metal-Rich Phases and Reconstructions of Mn<sub>x</sub>N<sub>y</sub> and GaN Thin Films

Foley, Andrew G. 13 June 2017 (has links)
No description available.
179

Ferromagnetic Thin and Ultra-Thin Film Alloys of Manganese and Iron with Gallium and Their Structural, Electronic, and Magnetic Properties

Mandru, Andrada Oana 19 July 2016 (has links)
No description available.
180

Low Temperature Scanning Tunneling Microscope for Single Atom Manipulation

Babonis, Gregory S. 18 July 2003 (has links)
No description available.

Page generated in 0.1428 seconds